Expression of Messenger RNAs Injected into Xenopus Laevis Oocytes

  • G. Marbaix
  • G. Huez
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


The genetic information carried by eukaryotic messenger RNAs can be translated to polypeptides either in cell-free protein synthesizing systems or after microinjection into living cells.


Xenopus Oocyte Bovine Leukemia Virus Xenopus Laevis Oocyte Alfalfa Mosaic Virus Avian Myeloblastosis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Marcus, A., Efron, D. and Weeks, D.P. (1974). The wheat embryo cell-free system. Methods in Enzymology, 30, 749.PubMedGoogle Scholar
  2. 2).
    Pelham, H.R. and Jackson, R.J. (1976). An efficient mRNA-dependent translation system from reticulocyte lysates. Eur. J. Biochem., 67, 247.PubMedGoogle Scholar
  3. 3).
    Graessmann, A. and Graessmann, M. (1971). The formation of melanin in muscle cells after the direct transfer of RNA from Harding-Passey melanoma cells. Hoppe-Seyler’s Z. Physiol. Chem., 352, 527.Google Scholar
  4. 4).
    Gurdon, J.B., Lane, C.D., Woodland, H.R. and Marbaix, G. (1971). Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature, 233, 177.PubMedGoogle Scholar
  5. 5).
    Lane, C.D., Marbaix, G. and Gurdon, J.B. (1971). Rabbit Haemoglobin synthesis in frog cells: the translation of reticulocyte 9S RNA in frog oocytes. J. Mol. Biol., 61, 73.PubMedGoogle Scholar
  6. 6).
    Marbaix, G. and Burny, A. (1964). Separation of the messenger RNA of reticulocyte polyribosomes. Biochem. Biophys. Res. Comm., 16, 522.PubMedGoogle Scholar
  7. 7).
    Chantrenne, H., Burny, A. and Marbaix, G. (1967). The search for the messenger RNA of hemoglobin. Progress in Nucleic Acid Research and Molecular Biology, 7, 173.Google Scholar
  8. 8).
    Huez, G., Burny, A., Marbaix, G. and Lebleu, B. (1967). Release of messenger RNA from rabbit reticulocyte polyribosomes at low concentration of divalent cations. Biochim. Biophys. Acta, 145, 629.PubMedGoogle Scholar
  9. 9).
    Lockard, R.E. and Lingrel, J.B. (1969). The synthesis of mouse hemoglobin β-chains in a rabbit reticulocyte cell-free system programmed with mouse reticulocyte 9S RNA. Biochem. Biophys. Res. Comm., 37, 204.PubMedGoogle Scholar
  10. 10).
    Deuchar, E. (1975). “Xenopus, the South African clawed frog”. John Wiley and sons, London.Google Scholar
  11. 11).
    Gurdon, J.B. (1967). African clawed frog. In: “Methods in developmental Biology”, (eds., F.H. Wilt and N.K. Wessells), Crowell Co., New York, 75.Google Scholar
  12. 11a).
    Brachet, J., Huez, G. and Hubert, E. (1973). Microinjection of rabbit haemoglobin messenger RNA into amphibian oocytes and embryos. Proc. Natl. Acad. Sci. U.S.A., 70, 543.PubMedGoogle Scholar
  13. 12).
    Barth, L.G. and Barth, L.J. (1959). Differentiation of cells of the Rana pipiens gastrula in unconditioned medium. J. Embroyol. Exp. Morph., 7, 210.Google Scholar
  14. 13).
    Gurdon, J.B. (1968). Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morph., 20, 401.PubMedGoogle Scholar
  15. 14).
    Moar, V.A., Gurdon, J.B., Lane, C.D. and Marbaix, G. (1971). Translational capacity of living frog eggs and oocytes, as judged by messenger RNA injection. J. Mol. Biol., 61, 93.PubMedGoogle Scholar
  16. 15).
    Marbaix, G. and Lane, C.D. (1972). Rabbit haemoglobin synthesis in frog cells: II. Further characterization of the products of translation of reticulocyte 9S RNA. J. Mol. Biol., 67, 517.PubMedGoogle Scholar
  17. 16).
    Gurdon, J.B., Lingrel, J.B. and Marbaix, G. (1973). Message stability in injected frog oocytes: long life of mammalian α and β globin messages. J. Mol. Biol., 80, 539.PubMedGoogle Scholar
  18. 17).
    Gurdon, J.B. (1973). The translation of messenger RNA injected in living oocytes of Xenopus laevis. In: “Karolinska Symposia on Research Methods in Reproductive Endocrinology, 6th Symposium”, 225.Google Scholar
  19. 18).
    Gurdon, J.B. (1974). Molecular Biology in a living cell. Nature, 248, 772.PubMedGoogle Scholar
  20. 19).
    Gurdon, J.B. (1974). “The Control of gene expression in animal development”. Clarendon Press, Oxford.Google Scholar
  21. 20).
    Lane, C.D. and Knowland, J. (1975). The injection of RNA into living cells: the use of the frog oocytes for the assay of mRNA and the study of the control of gene expression. In: “The biochemistry of Animal Development” (ed., R. Weber), Academic Press, New York, 3, 145.Google Scholar
  22. 21).
    Gurdon, J.B. (1977). Egg cytoplasm and gene control in development. Proc. R. Soc. Lond. B., 198, 211.PubMedGoogle Scholar
  23. 22).
    Berns, A.J., Kraaikamp, M., Bloemendal, H. and Lane, C.D. (1972). Calf crystallin synthesis in frog cells: the translation of lens-cell 14S RNA in oocytes. Proc. Natl. Acad. Sci. U.S.A., 69, 1606.PubMedGoogle Scholar
  24. 23).
    Smith, M., Stavnezer, J., Huang, R.C., Gurdon, J.B. and Lane, C.D. (1973). Translation of messenger RNA for mouse immunoglobulin light chains in living frog oocytes. J. Mol. Biol., 80, 553.PubMedGoogle Scholar
  25. 24).
    Chan, L., Kohler, P.O. and O’Malley, B.W. (1976). Translation of ovalbumin mRNA in Xenopus laevis oocytes. J. Clin. Invest., 57, 576.PubMedGoogle Scholar
  26. 25).
    Reynolds, F.H. Jr, Premkumar, E. and Pitha, P.M. (1975). Interferon activity produced by translation of human interferon messenger RNA in cell-free ribosomal systems and in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A., 72, 4881.PubMedGoogle Scholar
  27. 26).
    Beato, M. and Rungger, D. (1975). Translation of the messenger RNA for rabbit uteroglobin in Xenopus oocytes. FEBS Lett., 59, 305.PubMedGoogle Scholar
  28. 27).
    Lanclos, K.D. and Hamilton, T.H. (1975). Translation of hormone-induced messenger RNA in amphibian oocytes. Proc. Natl. Acad. Sci. U.S.A., 72, 3934.PubMedGoogle Scholar
  29. 28).
    Hew, C.L. and Yip, C. (1976). The synthesis of freezing-point-depressing protein of the winter flounder Pseudopleuronectus amevicanus in Xenopus laevis oocytes. Biochem. Biophys. Res. Comm., 71, 845.PubMedGoogle Scholar
  30. 28a).
    Nickol, J.M., Lee, K.L., Hollinger, T.G. and Kenney, F.T. (1976). Translation of messenger RNA specific for tyrosine aminotransferase in oocytes of Xenopus laevis. Biochem. Biophys. Res. Comm., 72, 687.PubMedGoogle Scholar
  31. 29).
    Kindås-Mügge, I., Lane, C.D. and Kreil, G. (1974). Insect protein synthesis in frog cells: the translation of honey-bee promelitin messenger RNA in Xenopus oocytes. J. Mol. Biol., 87, 451.PubMedGoogle Scholar
  32. 30).
    Laskey, R.A., Gurdon, J.B. and Crawford, L.V. (1972). Translation of encephalomyocarditis viral RNA in oocytes of Xenopus laevis. Proc. Natl. Acad. Sci. U.S.A., 69, 3665.PubMedGoogle Scholar
  33. 31).
    Ghysdael, J., Hubert, E., Travniček, M., Bolognesi, D.P., Burny, A., Cleuter, Y., Huez, G., Kettmann, R., Marbaix, G., Portetelle, D. and Chantrenne, H. (1977). Frog oocytes synthesize and completely process the precursor polypeptide to virion structural proteins after microinjection of Avian Myeloblastosis Virus RNA. Proc. Natl. Acad. Sci. U.S.A., 74, 3230.PubMedGoogle Scholar
  34. 32).
    Ghysdael, J., Kettmann, R. and Burny, A. (1979). Translation of Bovine Leukemia Virus virion RNA in heterologous protein synthesizing systems. J. Virol., 29, 1087.PubMedGoogle Scholar
  35. 33).
    van der Donk, J.A. (1975). Translation of plant messengers in egg cells of Xenopus laevis. Nature, 256, 674.PubMedGoogle Scholar
  36. 34).
    Schroder, J., Kreuzaler, F. and Schmock, J. (1977). Translation of plant-specific messenger RNAs in living animal cells. FEBS Lett., 81, 10.PubMedGoogle Scholar
  37. 35).
    Knowland, J. (1974). Protein synthesis directed by the RNA from a plant virus in a normal animal cell. Genetics, 78, 383.PubMedGoogle Scholar
  38. 35a).
    Kondo, M., Marbaix, G., Moens, L., Huez, G., Cleuter, Y. and Hubert, E. (1975). Synthesis of viral coat protein in Xenopus oocytes injected with Brome Mosaic Virus RNA, 10th FEBS Meeting, Paris, Abstract 352.Google Scholar
  39. 36).
    van Vloten-Doting, L., Bol, J., Neeleman, L., Rutgers, T., van Dalen, D., Castel, A., Bosch, L., Marbaix, G., Huez, G., Hubert, E. and Cleuter, Y. (1977). In vivo and in vitro translation of the RNAs of Alfalfa Mosaic Virus. In: “Nucleic Acids and Protein Synthesis in Plants”, (eds., L. Bogorad and J.H. Weil), Plenum Publishing Corporation, New York, 387.Google Scholar
  40. 37).
    Rutgers, T., van Vloten-Doting, L., Marbaix, G., Huez, G., Hubert, E. and Cleuter, Y. (1977). Translation of the RNAs of Brome Mosaic Virus in Xenopus oocytes, 11th FEBS Meeting, Copenhagen, Abstract A 2-5, 205.Google Scholar
  41. 38).
    Dicou, E., Huez, G., Marbaix, G. and Brachet, P. (1979). Synthesis of Dictyostelium discoideum secretary proteins in Xenopus laevis oocytes. FEBS Lett., 104, 275.PubMedGoogle Scholar
  42. 39).
    Furuichi, Y., La Fiandra, A. and Shatkin, A.J. (1977). 5′-terminal structure and mRNA stability. Nature, 266, 235.PubMedGoogle Scholar
  43. 40).
    Paterson, B.M. and Rosenberg, M. (1979). Efficient translation of prokaryotic mRNAs in a eukaryotic cell-free system requires addition of a cap structure. Nature, 279, 692.PubMedGoogle Scholar
  44. 41).
    Woodland, H. and Ayers, S. (1974). Effects on protein synthesis of injecting synthetic polyribonucleotides into living cells. Biochem. J., 144, 11.PubMedGoogle Scholar
  45. 42).
    Allende, C.C., Allende, J.E. and Firtel, R.A. (1974). The degradation of ribonucleic acids injected into Xenopus laevis oocytes. Cell, 2, 189.PubMedGoogle Scholar
  46. 43).
    Vassart, G., Refetoff, S., Brocas, H., Dinsart, C. and Dumont, J.E. (1975). Translation of thyroglobulin 33S messenger RNA as a means of determining thyroglobulin quaternary structure. Proc. Natl. Acad. Sci. U.S.A., 72, 3839.PubMedGoogle Scholar
  47. 44).
    Labarca, C. and Paigne, K. (1977). mRNA directed synthesis of catalytically active mouse β-glucuronidase in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A., 74, 4462.PubMedGoogle Scholar
  48. 45).
    Cavalieri, R.L., Havell, E.A., Vilček, J. and Pestka, S. (1977). Synthesis of human interferon by Xenopus laevis oocytes: two structural genes for interferons in human cells. Proc. Natl. Acad. Sci. U.S.A., 74, 3287.PubMedGoogle Scholar
  49. 46).
    Lebleu, B., Hubert, E., Content, J., de Wit, L., Braude, I.A. and de Clercq, E. (1978). Translation of mouse interferon mRNA in Xenopus laevis oocytes and in rabbit reticulocyte lysates. Biochem. Biophys. Res. Comm., 82, 665.PubMedGoogle Scholar
  50. 47).
    Laskey, R.A., Mills, A.D., Gurdon, J.B. and Partington, G.A. (1977). Protein synthesis in oocytes of Xenopus laevis is not regulated by the supply of messenger RNA. Cell, 11, 345.PubMedGoogle Scholar
  51. 48).
    Huez, G., Marbaix, G., Hubert, E., Leclercq, M., Nudel, U., Soreq, H., Salomon, R., Lebleu, B., Revel, M. and Littauer, U.Z. (1974). Role of the poly(A) segment in the translation of globin mRNA in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A., 71, 3143.PubMedGoogle Scholar
  52. 49).
    Berridge, M.V. and Lane, C.D. (1976). Translation of Xenopus liver messenger RNA in Xenopus oocytes: vitellogenin synthesis and conversion to yolk platelets proteins. Cell, 8, 283.PubMedGoogle Scholar
  53. 50).
    Asselbergs, F.A.M., van Venrooij, W.J. and Bloemendal, H. (1979). Messenger RNA competition in living Xenopus oocytes. Eur. J. Biochem., 94, 249.PubMedGoogle Scholar
  54. 51).
    Marbaix, G. and Gurdon, J.B. (1972). The effect of reticulocyte ribosome “factors” on the translation of haemoglobin messenger RNA in living frog oocytes. Biochim. Biophys. Acta, 81, 86.Google Scholar
  55. 52).
    Hunt, T., Hunter, T. and Munro, A. (1969). Control of haemoglobin synthesis: rate of translation of the messenger RNA for the α and β chains. J. Mol. Biol., 43, 123.PubMedGoogle Scholar
  56. 53).
    Campbell, P. N., McIlreavy, D. and Tarin, D. (1973). The detection of the messenger ribonucleic acid for the α-lactalbumin of guinea pig milk. Biochem. J., 134, 345.PubMedGoogle Scholar
  57. 54).
    Giglioni, B., Gianni, A.M., Comi, P., Ottoloenghi, S., and Rungger, D. (1973). Translational control of globin synthesis by haemin in Xenopus oocytes. Nature New Biol, 246, 99.PubMedGoogle Scholar
  58. 55).
    Karpetsky, T.P., Boguski, M.S. and Levy, C.C. (1979). Structure, properties and possible biological functions of polyadenylic acid. Subcellular Biochem., 6, 1.Google Scholar
  59. 56).
    Revel, M. and Groner, Y. (1978). Post-transcriptional and translational controls of gene expression in eukaryotes. Ann. Rev. Biochem., 47, 1079.PubMedGoogle Scholar
  60. 57).
    Greenberg, J.R. (1975). Messenger RNA metabolism of animal cells. J. Cell Biol., 64, 269.PubMedGoogle Scholar
  61. 58).
    Lewin, B. (1975). The relationship between heterogenous nuclear RNA and messenger RNA. Cell, 4, 11.PubMedGoogle Scholar
  62. 59).
    Brawerman, G. (1976). Characteristics and significance of the polyadenylate sequence in mammalian mRNA. Progress in Nucleic Acid Research and Molecular Biology, 17, 118.Google Scholar
  63. 60).
    Shafritz, D.A. (1977). Messenger RNA and its translation. In: “Molecular Mechanisms of Protein Biosynthesis” (eds., H. Weissbach and S. Petska), Academic Press, N.Y., 555.Google Scholar
  64. 61).
    Marbaix, G., Huez, G., Soreq, H., Gallwitz, D., Weinberg, E., Devos, R., Hubert, E. and Cleuter, Y. (1979). Role of the polyadenylate segment in the stability of eukaryotic messenger RNAs. In: “Gene Functions — 12th FEBS Meeting, Dresden, 1978”, (ed., S. Rosenthal). Pergamon Press, Oxford, 427.Google Scholar
  65. 62).
    Bard, E., Efrom, D., Marcus, A. and Perry, R.P. (1974). Translational capacity of deadenylated mRNA. Cell, 1, 101.Google Scholar
  66. 63).
    Williamson, R., Crossley, J. and Humphries, S. (1974). Translation of globin mRNA from which the poly(A) has been removed. Biochemistry, 13, 703.PubMedGoogle Scholar
  67. 64).
    Soreq, H., Nudel, U., Salomon, R., Revel, M. and Littauer, U.Z. (1974). In vitro translation of poly(A)-free globin mRNA. J. Mol. Biol., 88, 233.PubMedGoogle Scholar
  68. 65).
    Soreq, H. and Littauer, U.Z. (1977). Purification and characterization of polynucleotide phosphorylase from E. coli. J. Biol. Chem., 252, 6885.PubMedGoogle Scholar
  69. 66).
    Marbaix, G., Huez, G., Burny, A., Cleuter, Y., Hubert, E., Leclercq, M., Chantrenne, H., Soreq, H., Nudel, U. and Littauer, U.Z. (1975). Absence of poly(A) segment in globin mRNA accelerates its degradation in Xenopus oocytes. Proc. Natl. Acad. Sci. U.S.A., 72, 3065.PubMedGoogle Scholar
  70. 67).
    Sippel, A.E. (1973). Purification and characterization of ATP: RNA adenyltransferase from E. coli. Eur. J. Biochem., 37, 31.PubMedGoogle Scholar
  71. 68).
    Huez, G., Marbaix, G., Hubert, E., Cleuter, Y., Leclercq, M., Chantrenne, H., Devos, R., Soreq, H., Nudel, U. and Littauer, U.Z. (1975). Readenylation of poly(A)-free globin mRNA restores its stability in vivo. Eur. J. Biochem., 59, 589.PubMedGoogle Scholar
  72. 69).
    Nudel, U., Soreq, H., Littauer, U.Z., Marbaix, G., Huez, G., Leclercq, M., Hubert, E. and Chantrenne, H. (1976). Globin mRNA species containing poly(A) segments of different lengths. Eur. J. Biochem., 64, 115.PubMedGoogle Scholar
  73. 70).
    Perry, R.P. and Kelley, D.E. (1973). Messenger RNA turnover in mouse L cells. J. Mol. Biol., 79, 681.PubMedGoogle Scholar
  74. 71).
    Brawerman, G. (1973). Alterations in the size of the poly(A) segment of newly-synthesized mRNA of mouse ascites cells. Mol. Biol. Rep., 1, 7.Google Scholar
  75. 72).
    Sheiness, D. and Darnell, J.E. (1973). Poly(A) segment in mRNA becomes shorter with age. Nature New Biol., 241, 265.PubMedGoogle Scholar
  76. 73).
    Merkel, C.G., Kwan, S.P. and Lingrel, J.B. (1975). Size of the poly(A) region of newly synthesized globin mRNA. J. Biol. Chem., 250, 3725.PubMedGoogle Scholar
  77. 74).
    Nokin, P., Huez, G., Marbaix, G., Burny, A. and Chantrenne, H. (1976). Molecular modifications associated with ageing of globin mRNA in vivo. Eur. J. Biochem., 62, 509.PubMedGoogle Scholar
  78. 75).
    Nokin, P., Burny, A., Huez, G. and Marbaix, G. (1976). Globin messenger RNA from anaemic rabbit spleen: size of its polyadenylate segment. Eur. J. Biochem., 68, 431.PubMedGoogle Scholar
  79. 76).
    Huez, G., Marbaix, G., Gallwitz, D., Weinberg, E., Devos, R., Hubert, E. and Cleuter, Y. (1978). Functional stabilization of HeLa cell hi stone mRNAs injected into Xenopus oocytes by 3′-OH polyadenylation. Nature, 271, 572.PubMedGoogle Scholar
  80. 77).
    Maniatis, G.M., Ramirez, F., Cann, A., Marks, P.A. and Bank, A. (1976). Translation and stability of human globin mRNA in Xenopus oocytes. J. Clin. Invest., 58, 1415.Google Scholar
  81. 78).
    Mous, J., Peeters, B., van Bellegem, H. and Rombauts, W. (1979). Translation of biologically active messenger RNA from human placenta in Xenopus oocytes. Eur. J. Biochem., 94, 393.PubMedGoogle Scholar
  82. 79).
    Sehgal, P.B., Soreq, H. and Tamm, I. (1978). Does 3′-terminal poly(A) stabilize human fibroblast interferon mRNA in oocytes of Xenopus laevis?. Proc. Natl. Acad. Sci. U.S.A., 75, 5030.PubMedGoogle Scholar
  83. 80).
    Blobel, G. (1973). A protein of molecular weight 78,000 bound to the poly(A) region of eukaryotic mRNAs. Proc. Natl. Acad. Sci. U.S.A., 70, 924.PubMedGoogle Scholar
  84. 81).
    Huez, G., Marbaix, G., Burny, A., Hubert, E., Leclercq, M., Cleuter, Y., Chantrenne, H., Soreq, H. and Littauer, U.Z. (1977). Degradation of deadenylated rabbit α-globin mRNA in Xenopus oocytes is associated with its translation. Nature, 266, 473.PubMedGoogle Scholar
  85. 82).
    Shatkin, A.J. (1976). Capping of eukaryotic mRNAs. Cell, 9, 645.PubMedGoogle Scholar
  86. 83).
    Lockard, R.E. and Lane, C.D. (1978). Requirements for 7-methyl — guanosine in translation of globin mRNA in vivo. Nucl. Acids. Res., 5, 3237.PubMedGoogle Scholar
  87. 84).
    Marbaix, G., Huez, G. and Soreq, H. (1977). What is the role of poly(A) on eukaryotic messengers? Trends Biochem. Sci., 2, N106.Google Scholar
  88. 85).
    Jilka, R.L., Cavalieri, R.L., Yaffe, L. and Pestka, S. (1977). Synthesis and glycosylation of the M0PC-46B immunoglobulin kappa chain in Xenopus laevis oocytes. Biochem. Biophys. Res. Comm., 79, 625.PubMedGoogle Scholar
  89. 86).
    Decoen, N.J. and Bringer, A.E. (1977). Fucose incorporation into oocyte-synthesized rat immunoglobulins. FEBS Lett., 79, 191.Google Scholar
  90. 87).
    Katz, R.A., Maniatis, G.M. and Guntaka, R.V. (1979). Translation of Avian Sarcoma Virus RNA in Xenopus laevis oocytes. Biochem. Biophys. Res. Comm., 86, 447.PubMedGoogle Scholar
  91. 88).
    Blobel, G. and Sabatini, D.D. (1971). Ribosome-membrane interaction in eukaryotic cells. In: “Biomembranes”, (ed., L.A. Manson), Plenum Publishing Corporation, New York, 2, 193.Google Scholar
  92. 89).
    Blobel, G. and Dobberstein, B. (1975). Transfer of proteins across membranes. J. Cell Biol., 67, 835.PubMedGoogle Scholar
  93. 90).
    Mach, B., Faust, C.F. and Vassali, P. (1973). Different sizes of the product of the 14S immunoglobulin light chain mRNA translated in vitro and in amphibian oocytes. Mol. Biol. Rep., 1, 3.Google Scholar
  94. 91).
    Zehavi-Willner, T. and Lane, C. (1977). Subcellular compart-mentation of albumin and globin made in oocytes under the direction of injected messenger RNA. Cell, 11, 683.PubMedGoogle Scholar
  95. 92).
    Rapoport, T.A., Thiele, B.J., Prehn, S., Marbaix, G., Cleuter, Y., Hubert, E. and Huez, G. (1978). Synthesis of carp proinsulin in Xenopus oocytes. Eur. J. Biochem., 87, 229.PubMedGoogle Scholar
  96. 93).
    Mous, J., Peeters, B., Rombauts, W. and Heyns, W. (1977). Synthesis of rat prostatic binding protein in Xenopus oocytes and in wheat germ. Biochem., Biophys. Res. Comm., 79, 1111.Google Scholar
  97. 94).
    Huez, G., Ghysdael, J., Travniček, M., Burny, A., Cleuter, Y., Kettmann, R., Marbaix, G. and Portetelle, D. (1979). Post-translational processing of oncornavirus proteins. In: “Processing and Turnover of Proteins and Organelles in the Cell — 12th FEBS Meeting, Dresden, 1978”. (eds., S. Rapoport and T. Schewe) Pergamon Press, Oxford, 3.Google Scholar
  98. 95).
    Vogt, V., Eisenman, E., Diggelmann, H. (1975). Generation of Avian Myeloblastosis Virus structural proteins by proteolytic cleavage of a precursor polypeptide. J. Mol. Biol., 96, 471.PubMedGoogle Scholar
  99. 96).
    von der Helm, K. (1977). Cleavage of Rous sarcoma viral polypeptide precursor into internal structural proteins in vitro involves viral protein p16. Proc. Natl. Acad. Sci. U.S.A., 74, 911.PubMedGoogle Scholar
  100. 97).
    Gatica, M., Tarrago, A., Allende, C.C. and Allende, J.E. (1975). Aminoacylation of transfer RNA microinjected into Xenopus laevis oocytes. Nature, 256, 675.PubMedGoogle Scholar
  101. 98).
    Salari, A., Gatica, M. and Allende, J.E. (1977). In vivo repair of the 3′-terminus of transfer RNA injected into amphibian oocytes. Nucl. Ac. Res., 4, 1873.Google Scholar
  102. 99).
    Gatica, M. and Allende, J.E. (1977). Aminoacyl transfer from phenylalanyl-tRNA microinjected into Xenopus laevis oocytes. Biochem. Biophys. Res. Comm., 79, 352.PubMedGoogle Scholar
  103. 100).
    Joshi, J., Haenni, A.L., Hubert, E., Huez, G. and Marbaix, G. (1978). In vivo aminoacylation and “processing” of Turnip Yellow Mosaic Virus RNA in Xenopus laevis oocytes. Nature, 275, 339.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • G. Marbaix
    • 1
  • G. Huez
    • 1
  1. 1.Laboratoire de Chimie Biologique, Département de Biologie MoléculaireUniversité Libre de BruxellesRhode St-GenèseBelgium

Personalised recommendations