Advertisement

DNA Mediated Gene Transfer between Mammalian Cells

  • K. Willecke
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)

Abstract

The experimental transfer and expression of donor genetic material in recipient cells constitutes an assay for the biological function of DNA. If purified DNA can be used for gene transfer, one can possibly study the effects of structural modification, for example by enzymes, heat or X-rays on the biological function of DNA. Since cell culture became a routine method of cell biology, numerous attempts have been reported to demonstrate DNA mediated transfer and functional expression of donor genes in mammalian recipient cells. Most experiments of this kind with mammalian cells have been devised according to the successful DNA mediated gene transfer worked out with bacteria (transformation). In this review the expression “transformation” is only used for DNA mediated gene transfer in bacteria and yeast. Mammalian cell clones which harbour or express a transferred DNA sequence (“transgenome”) are called “transferent cells” (1). Since it can be expected that genes coding for neoplastic transformation will eventually also be transferred to mammalian recipient cells by chromosome or DNA mediated gene transfer, it would create unnecessary confusion if the expression “transformation” (in the sense of gene transfer) is also used for mammalian cells.

Keywords

Thymidine Kinase Recipient Cell Chinese Hamster Cell Thymidine Kinase Activity Mediate Gene Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Willecke, K. (1978). Results and prospects of chromosomal gene transfer between cultured mammalian cells. Theoret. Appl. Gen., 52, 79.Google Scholar
  2. 2).
    Brooks Low, K. and Porter, D.D. (1978). Modes of gene transfer and recombination in bacteria. Ann. Rev. Genet., 12, 249.CrossRefGoogle Scholar
  3. 3).
    Mcbride, W.O. and Athwal, R.S. (1976). Genetic analysis by chromosome mediated gene transfer. In Vitro, 12, 777.PubMedCrossRefGoogle Scholar
  4. 4).
    Ottolenghi-Nightingale, E. (1974). DNA mediated transformation in mammalian cells. In: Cell Communication. (ed., R.P. Cox), John Wiley and Sons, New York.Google Scholar
  5. 5).
    Szybalska, E.H. and Szybalski, W. (1962). Genetics of human cell lines IV. DNA-mediated heritable transformation of a biochemical trait. Proc. Nat. Acad. Sc., 48, 2026.CrossRefGoogle Scholar
  6. 6).
    Farber, F.E. and Eberle, R. (1976). Effects of cytochalasin and alkaloid drugs on the biological expression of herpes simplex virus type 2 DNA. Exp. Cell Res., 103, 15.PubMedCrossRefGoogle Scholar
  7. 7).
    Mcbride, W.O. and Ozer, H.L. (1973). Transfer of genetic information by purified metaphase chromosomes. Proc. Nat. Acad. Sc., 70, 1258.CrossRefGoogle Scholar
  8. 8).
    Miller, C.L. and Ruddle, F.H. (1978). Cotransfer of human X-linked markers into murine somatic cells via isolated chromosomes. Proc. Nat. Acad. Sc., 75, 3346.CrossRefGoogle Scholar
  9. 9).
    Graham, F. (1977). Biological activity of tumor virus DNA. Adv. Cancer Res., 25, 1.CrossRefGoogle Scholar
  10. 10).
    Graham, F.L. and van der Eb, A. (1973). A new technique for the assay of infectivity of hunan adenovirus 5 DNA. Virology, 54, 536.PubMedCrossRefGoogle Scholar
  11. 11).
    Miller, G., Wertheim, P., Wilson, G., Robinson, J., Geelen, J. L.M.C., van der Noorda, J. and van der Eb, A.J. (1979). Transfection of human lymphoblastoid cells with herpes simplex viral DNA. Proc. Nat. Acad. Sc., 76, 949.CrossRefGoogle Scholar
  12. 12).
    Wigler, M., Pellicer, A., Silverstein, S. and Axel, R. (1978). Biochemical transfer of single-copy encaryotic genes using total cellular DNA as donor. Cell, 14, 725.PubMedCrossRefGoogle Scholar
  13. 13).
    Willecke, K., Klomfass, M., Mierau, R. and Döhmer, J. (1979). Intraspecies transfer via total cellular DNA of the gene for hypoxanthine phosphoribosyltransferease into cultured mouse cells. Molec Gen. Genet., 170, 179.PubMedCrossRefGoogle Scholar
  14. 14).
    Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G. and Chasin, L. (1979). DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Nat. Acad. Sc., 76, 1373.CrossRefGoogle Scholar
  15. 15).
    Munyon, W., Kraiselburd, E., Davis, S. and Mann, J. (1971). Transfer of thymidine kinase to thymidine kinaseless L-cells by infection with ultraviolet-irradiated herpes simplex virus. J. Virol., 7, 813.PubMedGoogle Scholar
  16. 16).
    Bacchetti, S. and Graham, F.L. (1977). Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc. Nat. Acad. Sc., 74, 1590.CrossRefGoogle Scholar
  17. 17).
    Maitland, N.J. and Mcdougall, J.K. (1977). Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell, 11, 233.PubMedCrossRefGoogle Scholar
  18. 18).
    Wigler, M., Silverstein, S., Lee, L.S., Pellicer, A., Cheng, Y. C. and Axel, R. (1977). Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell, 11, 223.PubMedCrossRefGoogle Scholar
  19. 19).
    Littlefield, J.W. (1966). The use of drug-resistant markers to study the hybridization of mouse fibroblasts. Exp. Cell Res., 41, 190.PubMedCrossRefGoogle Scholar
  20. 20).
    Minson, A.C., Wildy, P.P., Buchan, A. and Darby, G. (1978). Introduction of the herpes simplex virus thymidine kinase gene into mouse cells using virus DNA or transformed cell DNA. Cell, 13, 581.PubMedCrossRefGoogle Scholar
  21. 21).
    Pellicer, A., Wigler, M., Axel, R., Silverstein, S. (1978). The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell, 14, 133.PubMedCrossRefGoogle Scholar
  22. 22).
    Wigler, M., Sweet, R., Sim, G.K., Wold, B., Pellicer, A., Lacy, E., Maniatis, T., Silverstein, S. and Axel, R. (1979). Transformation of mammalian cells with genes from procaryotes and encaryotes. Cell, 16, 777.PubMedCrossRefGoogle Scholar
  23. 23).
    Willecke, K., Lange, R., Krüger, A. and Reber, T. (1976). Co-transfer of two linked human genes into cultured mouse cells. Proc. Nat. Acad. Sc., 73, 1274.CrossRefGoogle Scholar
  24. 24).
    Degnen, G.E., Adelberg, I.L. and Eisenstadt, J.M. (1976). Chro mosome mediated gene transfer between closely related strains of cultured mouse cells. Proc. Nat. Acad. Sc., 73, 2838.CrossRefGoogle Scholar
  25. 25).
    Hirt, B. (1967). Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol., 26, 365.PubMedCrossRefGoogle Scholar
  26. 26).
    Shoyab, M. and Sen, A. (1978). A rapid method for the purification of extrachromosomal DNA from eucaryotic cells. J. Biol. Chem., 253, 6654.PubMedGoogle Scholar
  27. 27).
    Fournier, R.E.K. and Ruddle, F.H. (1977). Stable association of the human transgenome and most murine chromosomes demonstrated with trispecific microcell hybrids. Proc. Nat. Acad. Sc., 74, 3937.CrossRefGoogle Scholar
  28. 28).
    Davies, J. and Willecke, K. (1977). Segregation of human hypoxanthine phosphoribosyltransferase activity from somatic cell hybrids isolated after fusion of mouse gene transfer cells with Chinese hamster cells. Molec. Gen. Genet., 154, 191.PubMedCrossRefGoogle Scholar
  29. 29).
    Willecke, K., Mierau, R., Krüger, A. and Lange, R. (1978). Chromosomal gene transfer of human cytosol thymidine kinase into mouse cells. Molec. Gen. Genet., 161, 49.PubMedCrossRefGoogle Scholar
  30. 30).
    Rosenstraus, M.J. and Chasin, L.A. (1978). Separation of linked markers in Chinese hamster cell hybrids: mitotic recombination is not involved. Genetics, 90, 735.PubMedGoogle Scholar
  31. 31).
    Hinnen, A., Hicks, J.B. and Fink, G.R. (1978). Transformation in yeast. Proc. Nat. Acad. Sc., 75, 1929.CrossRefGoogle Scholar
  32. 32).
    Struhl, K., Stinchcomb, D.T., Scherer, S. and Davis, R.W. (1979). High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Nat. Acad. Sc., 76, 1035.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. Willecke
    • 1
  1. 1.Institut für Zellbiologie (Tumorforschung)Universität EssenEssenFed. Rep. Germany

Personalised recommendations