Tumorigenicity, Actin Cables and Gene Expression in Mouse CLID × CHO Cell Hybrids

  • R. Bravo
  • J. V. Small
  • A. Celis
  • K. Kaltoft
  • J. E. Celis
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


There is pressing need to search for assays of transformation that could be used to assess malignancy or tumorigenicity in cultured cells. A variety of reports have appeared correlating abnormal properties of transformed cells with the ability of these cells to produce tumors (1–10). Reported changes in cell cytoarchitecture, especially those of actin containing microfilament bundles following viral transformation (3, 6, 7, 10) promted us to look for similar changes in non-virally transformed cells (11). Quantitative analysis of the distribution and organization of microfilament bundles in several non-virally transformed cells as examined by indirect immunofluorescence using human actin antibodies (11, 12) and by electronmicroscopy of whole cells grown attached to support grids (13, 14) indicated that a loss or reduction of actin microfilament bundles was not essential for some of these cell lines to produce tumors in nude mice. From these studies, however, we could not exclude the possibility that the clearly different pattern of microfilament bundles (“crossed pattern”) found in mouse CLID cells could be directly related to tumorigenicity. In this cell line the bundles radiated or crossed from a region close to the cell’s center or near its projections and usually penetrated the projections.


Nude Mouse Chinese Hamster Ovary Cell Chinese Hamster Ovary Cell Hybrid Rous Sarcoma Virus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Ash, J.F., Vogt, P.K. and Singer, S.J. (1976). Reversion from transformed to normal phenotype by inhibition of protein synthesis in rat kidney cells infected with a temperature — sensitive mutant of Rous sarcoma virus. Proc.Natl. Acad. Sci. USA, 73, 3603.PubMedCrossRefGoogle Scholar
  2. 2).
    Burger, M.M. (1969). A difference in the architecture of the surface membrane of normal and virally transformed cells. Proc. Natl. Acad. Sci. USA, 62, 994.PubMedCrossRefGoogle Scholar
  3. 3).
    Edelman, G.M. and Yahara, I. (1976). Temperature sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 2047.PubMedCrossRefGoogle Scholar
  4. 4).
    Hilwig, I. and Gropp, A. (1972). Staining of constitutive heterochromatin in mammalian chromosomes with a new fluorochrome. Exp. Cell Res., 75, 122PubMedCrossRefGoogle Scholar
  5. 5).
    Hynes, R.O. (1973). Alteration of cell surface proteins by viral transformation and proteolysis. Proc. Natl. Acad. Sci. USA, 70, 3170.PubMedCrossRefGoogle Scholar
  6. 6).
    Pollack, R., Osborn, M. and Weber, K. (1975). Patterns of organization of actin and myosin in normal and transformed cultured cells. Proc. Natl. Acad. Sci. USA, 72, 994.PubMedCrossRefGoogle Scholar
  7. 7).
    Stoker, M., O’Neill, C., Berryman, S. and Waxman, U. (1968). Anchorage and growth regulation in normal and virus transformed cells. Int. J. Cancer, 3, 683.PubMedCrossRefGoogle Scholar
  8. 8).
    Todaro, G.J. and Green, J. (1963). Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell. Biol., 17, 299.PubMedCrossRefGoogle Scholar
  9. 9).
    Unkeless, J.C., Tobia, A., Ossowski, L., Quigley, J.R., Rifkin, D.B. and Reich, E. (1973). An enzymatic function associated with transformation of fibroblasts by oncogenic viruses. J. Exp. Med., 137, 85.PubMedCrossRefGoogle Scholar
  10. 10).
    Wang, E. and Goldberg, A.R., (1976). Changes in microfilament organization and surface topography upon transformation of chicken embryo fibroblasts with Rous sarcoma virus. Proc. Natl. Acad. Sci. USA, 73, 4065.PubMedCrossRefGoogle Scholar
  11. 11).
    Celis, J.E., Small, J.V., Andersen, P. and Celis, A. (1978). Microfilaments bundles in cultured cells. Expl. Cell Res., 114, 335.CrossRefGoogle Scholar
  12. 12).
    Andersen, P., Small, J.V. and Sobieszek, A. (1976). Studies on the specificity of smooth muscle antibodies. Clin. Exp. Immunol., 26, 57.PubMedGoogle Scholar
  13. 13).
    Small, J.V. and Celis, J.E. (1978). Filament arrangements in negatively stained cultured cells: the organization of actin. Cytobiologie, 16, 308.PubMedGoogle Scholar
  14. 14).
    Small, J.V. and Celis, J.E. (1978). Direct visualization of the 10 nm (100Å) filament network in whole and enucleated cultured cells. J. Cell Sci., 31, 393.PubMedGoogle Scholar
  15. 15).
    Celis, J.E., Small, J.V., Kaltoft, K. and Celis, A. (1979). Microfilament bundles in transformed mouse CLID × transformed CHO cell hybrids. Expl. Cell Res., 120, 79.CrossRefGoogle Scholar
  16. 16).
    Weisblum, B. and Hoenssler, E. (1974). Fluorometric properties of the bibenzimidazole derivative Hoechst 33258, a fluorescent probe specific for AT concentration in chromosomal DNA. Chromosoma, 46, 255.PubMedCrossRefGoogle Scholar
  17. 17).
    Fournier, R.E. and Ruddle, F.H. (1977). Stable association of the human transgenome and host murine chrosome demonstrated with trispecific microcell hybrids. Proc. Natl. Acad. Sci. USA., 74, 3937.PubMedCrossRefGoogle Scholar
  18. 18).
    Lazarides, E. (1976). Actin, α-actinin, and tropomyosin interaction in the structural organization of actin filaments in non-muscle cells. J. Cell. Biol., 68, 202.PubMedCrossRefGoogle Scholar
  19. 19).
    Rathke, P.C., Seib, E., Weber, K., Osborn, M. and Franke, W.W. (1977). Rod-like elements from actin containing microfilament bundles observed in culture cells after treatment with cytochalisin A (CA). Expl. Cell Res., 105, 253.CrossRefGoogle Scholar
  20. 20).
    Tucker, R.W., Sandford, K.K. and Frankel, F.R. (1978). Tubulin and actin in paired non-neoplastic and spontaneously transformed neoplastic cell lines in vitro fluorescent antibody studies. Cell, 13, 629.PubMedCrossRefGoogle Scholar
  21. 21).
    Osborn, M. and Weber, K. (1977). The display of microtubules in transformed cells. Cell, 12, 561.PubMedCrossRefGoogle Scholar
  22. 22).
    de Mey, J., Joniau, M., de Brabander, M., Moens, W. and Geuens, G. (1978). Evidence for unaltered structure and in vivo assembly of microtubules in transformed cell. Proc. Natl. Acad. Sci. USA, 75, 1339.PubMedCrossRefGoogle Scholar
  23. 23).
    Gabbiani, G., Borgia, R., Chaponnier, C., Rungger, E. and Weil, R. (1978). Cytoskeletal proteins in normal infected and virus transformed cells. Experientia, 34(7), 940.Google Scholar
  24. 24).
    Hynes, R.O. and Destree, A.T. (1978). 10 nm filaments in normal and transformed cells. Cell, 13, 151.PubMedCrossRefGoogle Scholar
  25. 25).
    Rubin, R.W. and Warren, R.H. (1979). Organization of tubulin in normal and transformed rat kidney cells. J. Cell. Biol., 82, 103.PubMedCrossRefGoogle Scholar
  26. 26).
    Wolin, S.L. and Kucherlapati, R.S. (1979). Expression of micro-tubule networks in normal cells, transformed cells and their hybrids. J. Cell Biol., 82, 76.PubMedCrossRefGoogle Scholar
  27. 27).
    Franke, W.W., Schmid, E., Weber, K. and Osborn, M. (1979). HeLa cells contain intermediate-sized filaments of the prekeratin type. Expl. Cell Res., 118, 95.CrossRefGoogle Scholar
  28. 28).
    O’Farrell, P.H. (1975). High resolution two dimensional electrophoresis of proteins. J. Biol. Chem., 250, 4007.PubMedGoogle Scholar
  29. 29).
    O’Farrell, P.Z., Goodman, H.M. and O’Farrell, P.H. (1977). High resolution two dimensional electrophoresis of basic as well as acidic proteins. Cell, 12, 1133.PubMedCrossRefGoogle Scholar
  30. 30).
    Watt, F.M., Harris, H., Weber, K. and Osborn, M. (1978). The distribution of actin cables and microtubules in hybrids between malignant and non-malignant cells and in tumors derived from them. J. Cell Sci., 32, 419.PubMedGoogle Scholar
  31. 31).
    Willingham, M.C., Yamada, K.M., Yamada, S.S., Pouyssegur, J. and Pastan, I. (1977). Microfilament bundles and cell shape are related to adhesiveness to substratum and are dissociable from growth control in cultured fibroblasts. Cell, 10, 375.PubMedCrossRefGoogle Scholar
  32. 32).
    Ali, I.A., Mautner, V., Lanza, R. and Hynes, R.O. (1977). Restoration of normal morphology, adhesion and cytoskeleton in transformed cells by addition of a transformation-sensitive surface protein. Cell, 11, 115.PubMedCrossRefGoogle Scholar
  33. 33).
    Miller, O.J., Dev, V.G., Miller, D.A., Tantravahi, R. and Eliceiri, G.L. (1978). Transcription and processing of both mouse and Syrian hamster ribosomal RNA genes in individual somatic cell hybrids. Exp. Cell Res, 115, 457.PubMedCrossRefGoogle Scholar
  34. 34).
    Kucherlapati, R. and Shin, S.L. (1979). Genetic control of tumorigenicity in interspecific mammalian cell hybrids. Cell, 16, 639.PubMedCrossRefGoogle Scholar
  35. 35).
    Defendi, V., Ephrussi, B., Koprowski, H. and Yoshida, M.C. (1967). Properties of hybrids between polyoma transformed and normal mouse cells. Proc. Natl. Acad. Sci. USA, 57, 299.PubMedCrossRefGoogle Scholar
  36. 36).
    Harris, H., Miller, O.J., Klein, G., Worst, P. and Tachibana, T. (1969). Suppression of malignancy by cell fusion. Nature, 233, 363.CrossRefGoogle Scholar
  37. 37).
    Croce, C.M. and Koprowski, H. (1974). Positive control of the transformed phenotype in hybrids between normal and SV40 transformed human cells. Science, 184, 1288.PubMedCrossRefGoogle Scholar
  38. 38).
    Croce, C., Aden, D. and Koprowski, H. (1975). Somatic cell hybrids between mouse peritoneal macrophages and simian virus-40 transformed human cells. II. Presence of human chromosome 7 carrying simian virus-40 genome in cells of tumors induced by hybrid cells. Proc. Nat. Acad. Sci. USA, 72, 1397.PubMedCrossRefGoogle Scholar
  39. 39).
    Aviles, D., Jami, J., Rousset, J.P. and Ritz, E. (1977). Tumor × host cell hybrids in the mouse: chromosomes from the normal cell parent in malignant hybrid tumors. J. Nat. Cancer Inst., 58, 1391.PubMedGoogle Scholar
  40. 40).
    Jonasson, J. and Harris, H. (1977). The analysis of malignancy by cell fusion. VIII. Evidence for the intervention of an extra chromosomal element. J. Cell Sci., 24, 255.PubMedGoogle Scholar
  41. 41).
    Jonasson, J., Povey, S. and Harris, H. (1977). The analysis of malignancy by cell fusion. VII. Cytogenetic analysis of hybrids between malignant and diploid cells and of tumors derived from them. J. Cell Sci., 24, 217.PubMedGoogle Scholar
  42. 42).
    Croce, C.M. and Koprowski, H. (1978). The genetics of human cancer. Sci. Am., 238, 117.CrossRefGoogle Scholar
  43. 43).
    Stanbridge, E.J. and Wilkinson, J. (1978). Analysis of malignancy in human cells: malignant and transformed phenotypes are under separate genetic control. Proc. Natl. Acad. Sci. USA, 75, 1466.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. Bravo
    • 1
  • J. V. Small
    • 1
    • 2
  • A. Celis
    • 1
  • K. Kaltoft
    • 1
  • J. E. Celis
    • 1
  1. 1.Division of Biostructural Chemistry, Department of ChemistryAarhus UniversityAarhus CDenmark
  2. 2.Institute of Molecular BiologyAustrian Academy of SciencesSalzburgAustria

Personalised recommendations