B-Cell and Epstein-Barr Virus (EBV) Associated Functions in Human Cells and Hybrids

  • J. Zeuthen
  • G. Klein
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


In this review, we will discuss some aspects of current work related to the control mechanisms involved in the selective expression of B-cell differentiated markers, as well as the control mechanisms involved in the expression and function of Epstein-Barr virus (EBV) associated markers in human cells.


Somatic Cell Hybrid Daudi Cell Viral Capsid Antigen Surface Immunoglobulin Immunoglobulin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Epstein, M.A. and Achong, B.G. (1977). Recent progress in Epstein-Barr virus research. Ann. Rev. Microbiol., 31, 421.CrossRefGoogle Scholar
  2. 2).
    Jondal, M. and Klein, G. (1973). Surface markers on human B and T lymphocytes. II. Presence of Epstein-Barr virus (EBV) receptors on B lymphocytes. J. Exp. Med., 138, 1365.PubMedCrossRefGoogle Scholar
  3. 3).
    Henle, G., Henle, W., and Diehl, V. (1968). Relation of Burkitt’s tumor-associated herpes type virus to infectuous mononucleosis. Proc. Natl. Acad. Sci. USA, 59, 94.PubMedCrossRefGoogle Scholar
  4. 4).
    Fialkow, P.J., Klein, G., Gartler, S.M., and Clifford, P. (1970). Clonal origin for individual Burkitt tumours. Lancet, 1, 384.PubMedCrossRefGoogle Scholar
  5. 5).
    Klein, G. (1979). The relationship of EB-virus to nasopharyngeal carcinoma. In “The Epstein-Barr virus” (eds. M.A. Epstein and B.G. Achong), in press.Google Scholar
  6. 6).
    Miller, G. (1971). Human lymphoblastoid cell lines and Epstein-Barr virus. A review of their interrelationships and their relevance to the etiology of leukoproliferative states in man. Yale J. Biol. Med., 43, 358.PubMedGoogle Scholar
  7. 7).
    Einhorn, L., Steinitz, M., Yefenof, E., Ernberg, I., Bakacs, T., and Klein, G. (1978). Epstein-Barr virus (EBV) receptors, complement receptors, and EBV infectability of different lymphocyte fractions of human peripheral blood. II. Epstein-Barr virus studies. Cell. Immunol., 35, 43.PubMedCrossRefGoogle Scholar
  8. 8).
    Åman, P. and Spira, G., unpublished.Google Scholar
  9. 9).
    Nilsson, K. (1978). Established human lymphoid cell lines as models for B-lymphocyte differentiation. In “Human lymphocyte differentiation: Its application to cancer” (eds. B. Serrou and C. Rosenfeld), p. 307. North-Holland Publishing Co., Amsterdam.Google Scholar
  10. 10).
    Preud’Homme, J.-L. and Seligmann, M. (1974). Surface immunoglobulins on human lymphoid cells. In “Progress in clinical immunology” (ed. R.S. Schwartz) vol. 2, p. 121. Grune and Stratton, New York.Google Scholar
  11. 11).
    Preud’Homme, J.-L., Brouet, J.-C., and Seligmann, M. (1977). Membrane bound IgD on human lymphoid cells, with special reference to immunoproliferative diseases. Immunol. Rev., 37, 127.PubMedCrossRefGoogle Scholar
  12. 12).
    Matsuoka, Y., Takahashi, M., Yagi, Y., Moore, G.E., and Pressman, D. (1968). Synthesis and secretion of immunoglobulins by established cell lines of human hematopoietic origin. J. Immunol., 101, 1111.PubMedGoogle Scholar
  13. 13).
    Klein, E., Nilsson, K., and Yefenof, E. (1975). An established Burkitt’s lymphoma line with cell membrane IgG. Clin. Immunol. Immunopathol., 3, 575.PubMedCrossRefGoogle Scholar
  14. 14).
    Klein, E., Eskeland, T., Inoue, M., Strom, R., and Johansson, B. (1970). Surface immunoglobulin-moieties on lymphoid cells. Exp. Cell Res., 62, 133.PubMedCrossRefGoogle Scholar
  15. 15).
    Eskeland, T. and Klein, E. (1971). Isolation of 7S IgM and Kappa chains from the surface membrane of tissue culture cells derived from a Burkitt lymphoma. J. Immunol., 107, 1367.Google Scholar
  16. 16).
    Nilsson, K. and Ponten, J. (1975). Classification and biological nature of established human hematopietic cell lines. Int. J. Cancer, 15, 321.PubMedCrossRefGoogle Scholar
  17. 17).
    Steinitz, M., Koskimies, S., Klein, G., and Mäkelä, O. (1978). Establishment of specific antibody producing human cell lines by antigen preselection and EBV transformation. In “Lympho-cyte Hybridomas” (eds. F. Melchers, M. Potter, N. Warner), Curr. Topics in Microbiol. and Immunol., 81, 156, Springer-Verlag.Google Scholar
  18. 18).
    Welsh, K.I. and Turner, M.J. (1976). Preparation of antisera specific for human B cells by immunization of rabbits with immune complexes. Tissue Antigens, 8, 1976.Google Scholar
  19. 19).
    Ting, A., Mickey, M.R., and Terasaki, P. (1976). B-lymphocyte alloantigens in Caucasians. J. Exp. Med., 143, 981.PubMedCrossRefGoogle Scholar
  20. 20).
    Nilsson, K., unpublished.Google Scholar
  21. 21).
    Dickler, H.B. and Kunkel, H. (1972). Interaction of aggregated IgG with human lymphocytes. J. Exp. Med., 136, 191.PubMedCrossRefGoogle Scholar
  22. 22).
    Jondal, M. (1974). Surface markers on human B-and T-lymphocytes. IV. Distribution of surface markers on resting and blast-transformed lymphocytes. Scand. J. Immunol., 3, 739.PubMedCrossRefGoogle Scholar
  23. 23).
    Bloom, B.R. and David, J.R. (eds.) (1976). In “In vitro methods of cell-mediated and tumor immunity”. Academic Press, New York.Google Scholar
  24. 24).
    Klein, G., Terasaki, P., Billing, R., Honig, R., Jondal, M., Rosen, A., Zeuthen, J., and Clements, G. (1977). Somatic cell hybrids between human lymphoma lines. III. Surface markers. Int. J. Cancer, 19, 66.PubMedCrossRefGoogle Scholar
  25. 25).
    Klein, G., Zeuthen, J., Terasaki, P., Billing, R., Honig, R., Jondal, M., Westman, A., and Clements, G. (1976). Inducibility of the Epstein-Barr virus (EBV) cycle and surface marker properties of EBV-negative lymphoma lines and their in vitro EBV-converted sublines. Int. J. Cancer, 18, 639.PubMedCrossRefGoogle Scholar
  26. 26).
    Zeuthen, J., Friedrich, U., Rosen, A., and Klein, E. (1977). Structural abnormalities in chromosome 15 in cell lines with reduced expression of Beta-2 microglobulin. Immunogenetics, 4, 567.CrossRefGoogle Scholar
  27. 27).
    Jondal, M., Klein, G., Oldstone, M., Bokish, V., and Yefenof, E. (1976). Surface markers on human B and T lymphocytes. VIII. Association between complement and Epstein-Barr virus (EBV) receptors on human lyrcphoid cells. Scand. J. Immunol., 5, 401.PubMedCrossRefGoogle Scholar
  28. 28).
    Yefenof, E., Klein, G., Jondal, M., and Oldstone, B. (1976). Surface markers on human B and T lymphocytes. IX. Two-color immunofluorescence studies on the association between EBV receptors and complement receptors on the surface of lymphoid cell lines. Int. J. Cancer, 17, 693.PubMedCrossRefGoogle Scholar
  29. 29).
    Rosen, A., Clements, G., Klein, G., and Zeuthen, J. (1977). Double immunoglobulin production in cloned somatic cell hybrids between two human lymphoid cell lines. Cell, 11, 139.PubMedCrossRefGoogle Scholar
  30. 30).
    Bloom, A.D. and Nakamura, F.T. (1974). Establishment of a tetraploid, immunoglobulin-producing cell line from the hybridization of two human lymphocyte lines. Proc. Natl. Acad. Sci. USA, 71, 2689.PubMedCrossRefGoogle Scholar
  31. 31).
    Levy, R. and Dilley, J. (1978). Rescue of immunoglobulin secretion from human neoplastic lymphoid cells by somatic cell hybridization. Proc. Nat. Acad. Sci. USA, 75, 2411.PubMedCrossRefGoogle Scholar
  32. 32).
    Orkin, S.H., Buchanan, P.D., Yount, W.J., Reisner, H., and Littlefield, J.W. (1973). Lambda-chain production in human lymphoblast-mouse fibroblast hybrids. Proc. Natl. Acad. Sci. USA, 70, 2401.PubMedCrossRefGoogle Scholar
  33. 33).
    Zeuthen, J. and Nilsson, K. (1976). Hybridization of a human myeloma permanent cell line with mouse cells. Cell Differentiation, 4, 355.PubMedCrossRefGoogle Scholar
  34. 34).
    Klein, G., Zeuthen, J., Eriksson, I., Terasaki, P., Bernoco, M., Rosen, A., Masucci, G., Povey, S., and Ber, R. (1979). Hybridization of a myeloid leukemia derived cell line (k562) with a Burkitt lymphoma line (P3HR-1): Surface marker and Epstein-Barr virus (EBV) studies. J. Natl. Cancer Inst., in press.Google Scholar
  35. 35).
    Melchers, F., Potter, M., and Warner, N.L. (eds.) (1978). “Lymphocyte hybridomas”, Curr. Topics in Microbiol. and Immunol., 81, Springer-Verlag.Google Scholar
  36. 36).
    Zeuthen, J., Stenman, S., Fabricius, H.-A., and Nilsson, K. (1976). Expression of immunoglobulin synthesis in hyman myeloma × non-lymphoid cell heterokaryons: Evidence for negative control. Cell Differentiation, 4, 369.PubMedCrossRefGoogle Scholar
  37. 37).
    Lozzio, C.B. and Lozzio, B.B. (1973). Cytotoxicity of a factor isolated from human spleen. J. Natl. Cancer Inst., 50, 535.PubMedGoogle Scholar
  38. 38).
    Lozzio, C.B. and Lozzio, B.B. (1975). Human chronic myelogenous leukemia cell line with positive Philadelphia chromosome. Blood, 45, 321.PubMedGoogle Scholar
  39. 39).
    Klein, E., BEN-Bassat, H., Neumann, H., Ralph, P., Zeuthen, J., Polliack, A., and Vanky, F. (1976). Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Int. J. Cancer, 18, 421.PubMedCrossRefGoogle Scholar
  40. 40).
    Andersson, L.C., Nilsson, K., and Gahmberg, C.G. (1979). K562, a human erythroleukemic cell line. Int. J. Cancer, 23, 143.PubMedCrossRefGoogle Scholar
  41. 41).
    Andersson, L.C., Jokinen, M., and Gahmberg, C.G. (1979). Induction of erythroid differentiation in the human leukemia cell line K562. Nature, 278, 364.PubMedCrossRefGoogle Scholar
  42. 42).
    Rutherford, T.R., Clegg, J.B., and Weatherall, D.J. (1979). K562 human leukaemic cells synthesize embryonic haemoglobin in response to haemin. Nature, 280, 164.PubMedCrossRefGoogle Scholar
  43. 43).
    Fialkow, P.J., Denman, A., Jacobsen, R.J., Lowenthal, M.N. (1979). Chronic myelocytic leukemia: Origin of some lymphocytes from leukemic stem cells. J. Clin. Invest., in press.Google Scholar
  44. 44).
    Klein, G. et al., manuscript in preparation (1979).Google Scholar
  45. 45).
    Möller, G. (ed.)(1976). Biochemistry and biology of Ia antigens. Transplant. Rev., 30.Google Scholar
  46. 46).
    Springer, T.A., Kaufman, J.F., Terhorst, C., and Strominger, J.L. (1977). Purificant and structural characterization of human HLA-1inked B cell antigens. Nature, 268, 213.PubMedCrossRefGoogle Scholar
  47. 47).
    Goodfellow, P.N., Jones, E.A., van Heyningen, V., Solomon, E., Bobrow, M., Miggiano, V., and Bodmer, K.P. (1975). The B2 microglobulin gene is on chromosome 15 and not in the HLA region. Nature, 254, 267.PubMedCrossRefGoogle Scholar
  48. 48).
    Oliver, N., Francke, U., and Pellegrino, M.A. (1978). Regional assignment of genes for mannose phosphate isomerase, pyruvate kinase 3, and B2-microglobulin expression on human chromosome 15 by hybridization of cells from a t(15;22) (q14;q13.3) translocation carrier. Cytogenet. Cell Genet., 22, 506.PubMedCrossRefGoogle Scholar
  49. 49).
    Pajunen, L., Solomon, E., Burgess, S., Bobrow, M., Povey, S., and Swallow, D. (1978). Regional mapping of chromosome 15. Gytogenet. Cell Genet., 22, 511.CrossRefGoogle Scholar
  50. 50).
    Fellous, M., Kamoun, M., Wiels, J., Dausset, J., Clements, G., Zeuthen, J., and Klein, G. (1977). Induction of HLA expression in Daudi cells after cell fusion. Immunogenetics, 5, 423.CrossRefGoogle Scholar
  51. 51).
    Ohno, S. (1977). The original function of MHC antigens as the general plasma membrane anchorage sites of organogenesis-directing proteins. Immunol. Rev., 33, 59.PubMedCrossRefGoogle Scholar
  52. 52).
    Beutler, B., Nagai, Y., Ohno, S., Klein, G., and Shapiro, I. (1978). The HLA dependent expression of testis-organizing H-Y antigen by human male cells. Cell, 13, 509.PubMedCrossRefGoogle Scholar
  53. 53).
    Nagai, Y., Ciccarese, S., and Ohno, S. (1979). The identification of human H-Y antigen and testicular transformation induced by its interaction with the receptor site of bovine fetal ovarian cells. Differentiation, 13, 155.PubMedCrossRefGoogle Scholar
  54. 54).
    Ber, R., Klein, G., Moar, M., Povey, S., Rosen, A., Westman, A., Yefenof, E., and Zeuthen, J. (1978). Somatic cell hybrids between human lymphoma lines. IV. Establishment and characterization of a P3HR-1/Daudi hybrid. Int. J. Cancer, 21, 707.PubMedCrossRefGoogle Scholar
  55. 55).
    Graessmann, A., Graessmann, M., and Mueller, C. (1980). Biological activity of simian virus 40 DNA fragments and T-antigen tested by microinjection into tissue culture cells. This volume. (Further references to the technique of microcapillary microinjection are found in this article).Google Scholar
  56. 56).
    Jesper Zeuthen, Stella Rosenbaum, and Edith Trøst Sørensen, unpublished.Google Scholar
  57. 57).
    Zur Hausen, H. (1975). Oncogenic herpesviruses. Biochim. Biophys. Acta, 417, 25.PubMedGoogle Scholar
  58. 58).
    Reedman, B. and Klein, G. (1973). Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. Int. J. Cancer, 11, 499.PubMedCrossRefGoogle Scholar
  59. 59).
    Kurstak, E., de The, G., van den Hurk, J., Charpentier, G., Kurstak, C., Tijssen, P., and Morisset, R. (1978). Detection of Epstein-Barr virus antigens by peroxidase-labeled specific immunoglobulins. J. Med. Virol., 2, 189.PubMedCrossRefGoogle Scholar
  60. 60).
    Ernberg, I., Andersson-Anvret, M., Klein, G., Lundin, L., and Killander, D. (1977). Relationship between the amount of Epstein-Barr virus determined nuclear antigen per cell and the number of EBV-DNA copies per cell. Nature, 266, 269.PubMedCrossRefGoogle Scholar
  61. 61).
    Henle, W., Henle, G., Zajac, B., Pearsson, G., Waubke, R., and Scriba, M. (1970). Differential reactivity of human serums with early antigens induced by Epstein-Barr virus. Science, 169, 188.PubMedCrossRefGoogle Scholar
  62. 62).
    Henle, G. and Henle, W. (1966). Immunofluorescence in cells derived from Burkitt’s lymphoma. J. Bact., 91, 1248.PubMedGoogle Scholar
  63. 63).
    Kallin, B., Luka, J., and Klein, G. (1979). Immunochemical characterization of Epstein-Barr virus (EBV) associated early and late antigens in n-butyrate treated P3HR-1 cells. J. Virol., in press.Google Scholar
  64. 64).
    Chen, S.-T., Estes, J.E., Huang, E.-S., and Pagano, J.S. (1978). Epstein-Barr virus-associated thymidine kinase. J. Virol., 26, 203.PubMedGoogle Scholar
  65. 65).
    Klein, G. and Dombos, L. (1973). Relationship between the sensitivity of EBV-carrying lymphoblastoid lines to super-infection and the inducibility of the resident viral genome. Int. J. Cancer, 11, 327.PubMedCrossRefGoogle Scholar
  66. 66).
    Luka, J., Kallin, B., and Klein, G. (1979). Induction of the Epstein-Barr viral cycle in latently infected cells by n-butyrate. Virology, 94, 228.PubMedCrossRefGoogle Scholar
  67. 67).
    Tovey, M.C., Lenoir, G., and Bergnon-Lours, J. (1978). Activation of latent Epstein-Barr virus by antibody to human IgM. Nature, 276, 270.PubMedCrossRefGoogle Scholar
  68. 68).
    Zur Hausen, H., Bornkamm, G.W., Schmidt, R., and Hecker, E. (1979). Tumor initiators and promotors in the induction of Epstein-Barr virus. Proc. Natl. Acad. Sci. USA, 76, 782.PubMedCrossRefGoogle Scholar
  69. 69).
    Aya, T. and Osato, T. (1974). Early events in the transformation of human chord blood leukocytes by Epstein-Barr virus: Induction of DNA synthesis, mitosis and the virus associated nuclear antigen synthesis. Int. J. Cancer, 14, 341.PubMedCrossRefGoogle Scholar
  70. 70).
    Robinson, J. and Miller, G. (1975). Assay for Epstein-Barr virus based on stimulation of DNA synthesis in mixed leukocytes from human umbilical blood. J. Virol., 15, 1065.PubMedGoogle Scholar
  71. 71).
    Einhorn, L. and Ernberg, I. (1978). Induction of EBNA precedes the first cellular S-phase after EBV-infection of human lymphocytes. Int. J. Cancer, 21, 157.PubMedCrossRefGoogle Scholar
  72. 72).
    Ernberg, I. (1979). Requirements for macromolecular synthesis during primary Epstein-Barr virus infection of lymphocytes. Submitted for publ..Google Scholar
  73. 73).
    Zerbini, M. and Ernberg, I. (1979). Epstein-Barr virus infection and growth stimulating effect in human B-lymphocytes. Submitted for publ..Google Scholar
  74. 74).
    Hoggan, M.D., Rowe, W.P., Black, P.H., and Huebner, R.J. (1965). Production of tumor specific antigens by oncogenic viruses during acute cytolytic infection. Proc. Natl. Acad. Sci. USA, 53, 12.PubMedCrossRefGoogle Scholar
  75. 75).
    Oxman, M.N., Takemoto, K.K., and Eckhart, W. (1972). Polyoma T antigen synthesis by temperature-sensitive mutants of polyoma virus. Virology, 49, 675.PubMedCrossRefGoogle Scholar
  76. 76).
    Steinitz, M. and Klein, G. (1975). Comparison between growth characteristics of an Epstein-Barr virus (EBV)-genome negative lymphoma line and its EBV-converted subline in vitro. Proc. Natl. Acad. Sci. USA, 72, 3513.CrossRefGoogle Scholar
  77. 77).
    Steinitz, M. and Klein, G. (1976). Epstein-Barr virus (EBV)-induced change in saturation density and serum dependence of established, EBV-negative lymphoma lines in vitro. Virology, 70, 570.PubMedCrossRefGoogle Scholar
  78. 78).
    Steinitz, M. and Klein, G. (1977). Further studies on the differences in serum dependence in EBV negative lymphoma lines and their in vitro converted, virus-genome carrying sublines. Eur. J. Cancer, 13, 1269.PubMedCrossRefGoogle Scholar
  79. 79).
    Yefenof, E. and Klein, G. (1976). Difference in antibody induced redistribution of membrane IgM in EBV-genome free and EBV positive human lymphoid cells. Exp. Cell Res., 99, 175.PubMedCrossRefGoogle Scholar
  80. 80).
    McConnell, I., Klein, G., Lint, T.F., and Lachmann, P.J. (1978). Activation of the alternative complement pathway by human B cell lymphoma lines is associated with Epstein-Barr virus transformation of the cells. Eur. J. Immunol., 8, 453.PubMedCrossRefGoogle Scholar
  81. 81).
    Yefenof, E., Klein, G., BEN-Bassat, H., and Lundin, L. (1977). Differences in the Con A — induced redistribution and agglutination patterns of EBV genome-free and EBV-carrying human lymphoma lines. Exp. Cell Res., 108, 185.PubMedGoogle Scholar
  82. 82).
    Montagnier, L. and Gruest, J. (1979). Cell-density-dependence for growth in agarose of two human lymphoma lines and its decrease after Epstein-Barr virus conversion. Int. J. Cancer, 23, 71.PubMedCrossRefGoogle Scholar
  83. 83).
    Holley, R.W., Armour, R., Baldwin, J.H., Brown, K.D., and Yeh, Y.-C. (1977). Density-dependent regulation of growth of BSC-1 cells in cell culture: Control of growth by serum factors. Proc. Natl. Acad. Sci. USA, 74, 5046.PubMedCrossRefGoogle Scholar
  84. 84).
    Povlsen, C.O., Fialkow, P.J., Klein, E., Klein, G., Rygaard, J., and Wiener, F. (1973). Growth and antigenic properties of a biopsy-derived Burkitt’s lymphoma in thymusless (nude) mice. Int. J. Cancer, 11, 30.PubMedCrossRefGoogle Scholar
  85. 85).
    Huang, D.P., Ho, J.H.C., Henle, W., and Henle, G. (1974). Demonstration of Epstein-Barr virus-associated nuclear antigen in nasopharyngeal carcinoma cells from fresh biopsies. Int. J. Cancer, 14, 580.PubMedCrossRefGoogle Scholar
  86. 86).
    Klein, G., Giovanella, B.C., Lindahl, T., Fialkow, P.J., Singh, S., and Stehlin, J.S. (1974). Direct evidence for the presence of Epstein-Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx. Proc. Natl. Acad. Sci. USA, 71, 4737.PubMedCrossRefGoogle Scholar
  87. 87).
    Klein, G., Wiener, F., Zech, L., Zur Hausen, H., and Reedman, B. (1974). Segregation of the EBV-determined nuclear antigen (EBNA) in somatic cell hybrids derived from the fusion of a mouse fibroblast and a human Burkitt lymphoma line. Int. J. Cancer, 14, 54.PubMedCrossRefGoogle Scholar
  88. 88).
    Lindahl, T., Klein, G., Reedman, B.M., Johansson, B., and Singh, S. (1974). Relationship between Epstein-Barr virus (EBV) DNA and the EBV-determined nuclear antigen (EBNA) in Burkitt lymphoma biopsies and other lymphoproliferative malignancies. Int. J. Cancer, 13, 764.PubMedCrossRefGoogle Scholar
  89. 89).
    Klein, G. (1975). Studies on the Epstein-Barr virus genome and the EBV-determined nuclear antigen in human malignant disease. Cold Spring Harbor Symp. Quant. Biol., 39, 783.PubMedCrossRefGoogle Scholar
  90. 90).
    Frank, A., Andiman, W.A., and Miller, G. (1976). Epstein-Barr virus and non-human primates: Natural and experimental infection. Adv. Cancer Res., 23, 171.PubMedCrossRefGoogle Scholar
  91. 91).
    Glaser, R., Ablashi, D.V., Nonoyama, M., Henle, W., and Easton, J. (1977). Enhanced oncogenic behavior of human and mouse cells after cellular hybridization with Burkitt tumor cells. Proc. Natl. Acad. Sci. USA, 74, 2574.PubMedCrossRefGoogle Scholar
  92. 92).
    Spira, J., Povey, S., Wiener, F., Klein, G., and Andersson-Anvret, M. (1977). Chromosome banding, isoenzyme studies and determination of Epstein-Barr virus DNA content on human Burkitt lymphoma/mouse hybrids. Int. J. Cancer, 20, 849.PubMedCrossRefGoogle Scholar
  93. 93).
    Steplewski, Z., Koprowski, H., Andersson-Anvret, M., and Klein, G. (1978). Epstein-Barr virus in somatic cell hybrids between mouse cells and human nasopharyngeal carcinoma cells. J. Cell Physiol., 97, 1.PubMedCrossRefGoogle Scholar
  94. 94).
    Staczek, J., Steplewski, Z., Weinmann, R., Klein, G., and Koprowski, H. (1979). Manuscript in prep..Google Scholar
  95. 95).
    Jesper Zeuthen and George Klein, unpublished.Google Scholar
  96. 96).
    Nilsson, K., Giovanella, B.C., Stehlin, J.S., and Klein, G. (1977). Tumorigenicity of human hematopoietic cell lines in athymic nude mice. Int. J. Cancer, 19, 337.PubMedCrossRefGoogle Scholar
  97. 97).
    Manolov, G. and Manolova, Y. (1972). Marker band in one chromosome 14 from Burkitt lymphomas. Nature, 237, 33.PubMedCrossRefGoogle Scholar
  98. 98).
    Moar, M. and Klein, G. (1979). Abortive expression of the Epstein-Barr virus (EBV) cycle in a variety of EBV DNA containing cell lines, as reflected by nucelic acid hybridization in situ. Int. J. Cancer, in press.Google Scholar
  99. 99).
    Nyormoi, O., Klein, G., Adams, A., and Dombos, L. (1973). Sensitivity to EBV superinfection and TUdR inducibility of hybrid cells formed between a sensitive and a relatively resistant Burkitt lymphoma cell line. Int. J. Cancer, 12, 396.PubMedCrossRefGoogle Scholar
  100. 100).
    Klein, G., Clements, G., Zeuthen, J., and Westman, A. (1976). Somatic cell hybrids between human lymphoma lines. II. Spontaneous and induced patterns of the Epstein-Barr virus (EBV) cycle. Int. J. Cancer, 17, 715.PubMedCrossRefGoogle Scholar
  101. 101).
    Klein, G., Clements, G., Zeuthen, J., and Westman, A. (1977). Spontaneous and induced patterns of the Epstein-Barr virus (EBV) cycle in a new set of somatic cell hybrids. Cancer Letters, 3, 91.PubMedCrossRefGoogle Scholar
  102. 102).
    Moar, M.H., Ber, R., Klein, G., Westman, A., and Eriksson, I. (1978). Somatic cell hybrids between human lymphoma lines. V. IUdR inducibility and P3HR-1 superinfectability of Daudi/ HeLa (DAD) and Daudi/P3HR-1 (DIP-1) cell lines. Int. J. Cancer, 22, 669.PubMedCrossRefGoogle Scholar
  103. 103).
    Glaser, R. and Rapp, F. (1972). Rescue of Epstein-Barr virus from somatic cell hybrids of Burkitt lynphoblastoid cells. J. Virol., 10, 288.PubMedGoogle Scholar
  104. 104).
    Glaser, R. and Nonoyama, M. (1973). Epstein-Barr virus: Detection of genome in somatic cell hybrids of Burkitt lymphoblastoid cells. Science, 179, 492.PubMedCrossRefGoogle Scholar
  105. 105).
    Tanaka, A., Nonoyama, M., and Glaser, R. (1977). Transcription of latent Epstein-Barr virus genomes in human epithelial/Burkitt hybrid cells. Virology, 82, 63.PubMedCrossRefGoogle Scholar
  106. 106).
    Lenoir, G., Berthelon, M.C., Faure, M.C., and de The, G. (1976). Characterization of Epstein-Barr virus antigens. I. Biochemical analysis of the complement-fixing soluble antigen and its relationship with Epstein-Barr virus-associated nuclear antigen. J. Virol., 17, 672.PubMedGoogle Scholar
  107. 107).
    Luka, J., Siegert, W., and Klein, G. (1977). Solubilization of the Epstein-Barr virus-determined nuclear antigen and its characterization as a DNA-binding protein. J. Virol., 22, 1.PubMedGoogle Scholar
  108. 108).
    Luka, J., Lindahl, T., and Klein, G. (1978). Purification of the Epstein-Barr virus-determined nuclear antigen from Epstein-Barr virus-transformed human lymphoid cell lines. J. Virol., 27, 604.PubMedGoogle Scholar
  109. 109).
    Matsuo, T.S., Nishi, H., Hiram, H., and Osato, T. (1977). Studies of Epstein-Barr virus related antigens. II. Biochemical properties of soluble antigen in Raji Burkitt lymphoma cells. Int. J. Cancer, 19, 364.PubMedCrossRefGoogle Scholar
  110. 110).
    Ohno, S., Luka, J., Lindahl, T., and Klein, G. (1977). Identification of a purified complement-fixing antigen as Epstein-Barr virus-determined nuclear antigen (EBNA) by its binding to metaphase chromosomes. Proc. Natl. Acad. Sci. USA, 74, 1605.PubMedCrossRefGoogle Scholar
  111. 111).
    Baron, D. and Strominger, J.L. (1978). Partial purification and properties of Epstein-Barr virus-associated nuclear antigen. J. Biol. Chem., 253, 2875.PubMedGoogle Scholar
  112. 112).
    Edith Trøst Sørensen and Jesper Zeuthen, unpublished.Google Scholar
  113. 113).
    Klein, G., Luka, J., and Zeuthen, J. (1979). Epstein-Barr virus (EBV)-induced transformation and the role of the nuclear antigen (EBNA). Cold Spring Harbor Symp. Quant. Biol., 44, in press.Google Scholar
  114. 114).
    Lane, D.P. and Crawford, L.V. (1979). T antigen is bound to a host protein in SV40-transformed cells. Nature, 278, 261.PubMedCrossRefGoogle Scholar
  115. 115).
    Martin, G. and Oppenheim, A. (1977). Initiation points for DNA replication in non-transformed and simian virus 40-transformed Chinese hamster lung cells. Cell, 11, 859.PubMedCrossRefGoogle Scholar
  116. 116).
    Oppenheim, A. and Martin, A. (1978). Initiation points for DNA replication in non-transformed and simian virus 40-transformed BALB/c3T3 cells. J. Virol., 25, 450.PubMedGoogle Scholar
  117. 117).
    Ariella Oppenheim and Hannah Ben-Bassat, unpublished.Google Scholar
  118. 118).
    Kaltoft, K. and Celis, J.E. (1978). Ghost-mediated transfer of human hypoxanthine guanine phosphoribosyl transferase into deficient Chinese hamster ovary cells by means of polyethylene glycol-induced fusion. Exp. Cell Res., 115, 423.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. Zeuthen
    • 1
  • G. Klein
    • 2
  1. 1.Institute of Human Genetics, The Bartholin BuildingUniversity of AarhusAarhus CDenmark
  2. 2.Department of Tumor BiologyKarolinske InstitutetStockholmSweden

Personalised recommendations