Fusion of Cell Fragments as a Method in Cell Genetics

Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


Prior to the early sixties mammalian genetics had been concerned almost exclusively with the mechanisms by which genetic information was transmitted through the germ cells. Although this is still a central area recent technical developments now make it possible to analyze the organization and function of genes in somatic cells. Somatic cell genetics is a new subfield of genetics which aims to define genetic mechanisms involved in differentiation, neoplasia, inborn errors of metabolism, cell-virus interactions and other hereditary phenomena in somatic cells. The methodology of this new field includes generation and selection of mutant cell lines, phenotypic analysis of cultured cells, cell hybridization and gene transfer methods to mention but a few of the methods currently used.


Intact Cell Parental Cell Sendai Virus Cell Fragment Nuclear Donor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Okada, Y. (1958). The fusion of Ehrlich’s tumor cells caused by HVJ virus in vitro. Bikens J., 1, 103.Google Scholar
  2. 2).
    Okada, Y & Murayame, F. (1968). Fusion of cells by HVJ: Requirement of concentration of virus particles at the site of contact of two cells for fusion. Exptl. Cell Res., 52, 34.PubMedCrossRefGoogle Scholar
  3. 3).
    Okada, Y. and Tadokoro, J. (1962). Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s tumor cells. II. Quantitative analysis of giant polynuclear cell formation. Exptl. Cell Res., 26, 108.PubMedCrossRefGoogle Scholar
  4. 4).
    Ringertz, N.R. and Savage, R.E. (1976). Cell hybrids, Academic Press, New York, 1976.Google Scholar
  5. 5).
    Weiss, M.C. and Green, H. (1967). Human-mouse hybrid cell lines containing partial complements of human chromosomes and functioning human genes. Proc. Natl. Acad. Sci. USA, 58, 1104.PubMedCrossRefGoogle Scholar
  6. 6).
    Ringertz, N.R. and Bolund, L. (1974). Reactivation of chick erythrocyte nuclei by somatic cell hybridization. In, Int. Rev. Exptl. Pathol., Vol. XIII, p. 83 (ed., G.W. Richter and M.A. Epstein). Academic Press, New York.Google Scholar
  7. 7).
    Harris, H. (1967). The reactivation of the red cell nucleus. J. Cell Sci., 2, 23.PubMedGoogle Scholar
  8. 8).
    Harris, H. (1970). Cell fusion. The Dunham Lectures, Oxford University Press, London and New York.Google Scholar
  9. 9).
    Dupuy-Coin, A.-M., Bouteille, M., Ege, T. and Ringertz, N.R. (1976). Ultrastructure of chick erythrocyte nuclei undergoing reactivation in heterokaryons and enucleated cells. Exptl. Cell Res., 101, 355.PubMedCrossRefGoogle Scholar
  10. 10).
    Schneeberger, E.E. and Harris, H. (1966). An ultrastructural study of interspecific cell fusion induced by inactivated Sendai virus. J. Cell Sci., 1, 401.PubMedGoogle Scholar
  11. 11).
    Bolund, L., Darzynkiewicz, Z. and Ringertz, N.R. (1969). Growth of hen erythrocyte nuclei undergoing reactivation in heterokaryons, Exptl. Cell Res., 56, 406.PubMedCrossRefGoogle Scholar
  12. 12).
    Ringertz, N.R., Carlsson, S.-A., Ege, T. and Bolund, L. (1971). Detection of human and chick nuclear antigens in nuclei of chick erythrocytes during reactivation in heterokaryons with HeLa cells. Proc. Natl. Acad. Sci. USA, 68, 3228.PubMedCrossRefGoogle Scholar
  13. 13).
    Koffler, D., Carr, R., Agnello, V., Thoburn, R. and Kunkel, G.H. (1971). J. Exptl. Med., 134, 294.CrossRefGoogle Scholar
  14. 14).
    Appels, R., Tallroth, E., Appels, D.M. and Ringertz, N.R. (1975). Differential uptake of protein into the chick nuclei of HeLa × chick erythrocyte heterokaryons. Exptl. Cell Res., 92, 70.PubMedCrossRefGoogle Scholar
  15. 15).
    Appels, R., Bolund, L. and Ringertz, N.R. (1974). Biochemical analysis of reactivated chick erythrocyte nuclei isolated from chick × HeLa heterokaryons. J. Mol. Biol., 87, 339.PubMedCrossRefGoogle Scholar
  16. 16).
    Carlsson, S.-A., Moore, G.P.M. and Ringertz, N.R. (1973). Nucleocytoplasmic protein migration during the activation of chick erythrocyte nuclei in heterokaryons. Exptl. Cell Res., 76, 234.PubMedCrossRefGoogle Scholar
  17. 17).
    Darzynkiewicz, Z. and Chelmicka-Szore, E. (1972). Unscheduled DNA synthesis in hen erythrocyte nuclei reactivated in heterokaryons. Exptl. Cell Res., 74, 131.PubMedCrossRefGoogle Scholar
  18. 18).
    Rosenqvist, M., Stenman, S. and Ringertz, N.R. (1975). Uptake of SV40 T-antigen into chick erythrocyte nuclei in heterokaryons. Exptl. Cell Res., 92, 515.PubMedCrossRefGoogle Scholar
  19. 19).
    Ege, T., Carlsson, S.-A. and Ringertz, N.R. (1971). Immune microfluorimetric analysis of the distribution of species specific nuclear antigens in HeLa-chick erythrocyte heterokaryons. Exptl. Cell Res., 69, 472.PubMedCrossRefGoogle Scholar
  20. 20).
    Ege, T., Zeuthen, J. and Ringertz, N.R. (1975). Reactivation of chick erythrocyte nuclei after fusion with enucleated cells. Somatic Cell Gen., 1, 65.CrossRefGoogle Scholar
  21. 21).
    Poste, G. and Reeve, P. (1972). Enucleation of mammalian cells by cytochalasin B. II. Formation of hybrid cells and heterokaryons by fusion of anucleate and nucleated cells. Exptl. Cell Res., 73, 287.PubMedCrossRefGoogle Scholar
  22. 22).
    Ladda, R.L. and Estensen, R.D. (1970). Introduction of a heterologous nucleus into enucleated cytoplasms of cultured mouse L cells, Proc. Natl. Acad. Sci. USA, 67, 1528.PubMedCrossRefGoogle Scholar
  23. 23).
    Goto, S. and Ringertz, N.R. (1974). Preparation and characterization of chick erythrocyte nuclei from heterokaryons. Exptl. Cell Res., 85, 182.CrossRefGoogle Scholar
  24. 24).
    Appels, R., Bolund, L., Goto, S. and Ringertz, N.R. (1974). The kinetics of protein uptake by chick erythrocyte nuclei during reactivation in chick-mammalian heterokaryons. Exptl. Cell Res, 85, 182.PubMedCrossRefGoogle Scholar
  25. 25).
    Hämmerling, J. (1943). Über Genomwirkungen und Formbildingsfähigkeit bei Acetabularia. Arch. Entwick-Mech. Org., 132, 424.CrossRefGoogle Scholar
  26. 26).
    Hämmerling, J. (1953). Nucleo-cytoplasmic relationships in the development of Acetabularia. In, Intern. Rev. Cytol., 2, 475.CrossRefGoogle Scholar
  27. 27).
    Lorch, I.J. and Danielli, J.F. (1950). Transplantation of nucleic from cell to cell. Nature, 166, 329.PubMedCrossRefGoogle Scholar
  28. 28).
    Danielli, J.F., Lorch, I.J., Ord, M.J. and Wilson, E.C. (1955). Nucleus and cytoplasm in cellular inheritance. Nature, 176, 1114.CrossRefGoogle Scholar
  29. 29).
    Poste, G. (1973). Anucleate mammalian cells: Applications in cell biology and virology, In: Methods in Cell Biol., Vol. VIII, p. 123, (ed., D.M. Prescott), Academic Press, New York.Google Scholar
  30. 30).
    Carter, S.B. (1967). Effects of cytochalasins on mammalian cells. Nature, 213, 261.PubMedCrossRefGoogle Scholar
  31. 31).
    Prescott, D.M., Myerson, D. and Wallace, J. (1972). Enucleation of mammalian cells with cytochalasin B. Exptl. Cell Res., 71, 480.PubMedCrossRefGoogle Scholar
  32. 32).
    Ege, T., Hamberg, H., Krondahl, U., Ericsson, J. and Ringertz, N.R. (1974). Characterization of minicells (nuclei) obtained by cytochalasin enucleation. Exptl. Cell Res., 87, 365.PubMedCrossRefGoogle Scholar
  33. 33).
    Goldman, R.D., Pollack, R. and Hopkins, N. (1973). Preservation of normal behaviour by enucleated cells in culture. Proc. Natl. Acad. Sci. USA, 70, 750.PubMedCrossRefGoogle Scholar
  34. 34).
    Goldman, R.D. and Pollack, R. (1974). Uses of enucleated cells. In Methods of Cell Biol., Vol. VIII, p. 123 (ed., D.M. Prescott), Academic Press, New York.Google Scholar
  35. 35).
    Wise, G.E. and Prescott, D.M. (1973). Ultrastructure of enucleated mammalian cells in culture. Exptl. Cell Res., 81, 63.PubMedCrossRefGoogle Scholar
  36. 36).
    Shay, J.W., Porter, K.R. and Prescott, D.M. (1974). The surface morphology and fine structure of CHO (Chinese hamster ovary) cells following enucleation. Proc. Natl. Acad. Sci. USA, 71, 3059.PubMedCrossRefGoogle Scholar
  37. 37).
    Lucas, J.J., Szekely, E. and Kates, J.R. (1976). The regeneration and division of mouse L-cell karyoplasts. Cell, 7, 115.PubMedCrossRefGoogle Scholar
  38. 38).
    Veomett, G., Prescott, D.M., Shay, J. and Porter, K.R. (1974). Reconstruction of mammalian cells from nuclear and cytoplasmic components separated by treatment with cytochalasin B. Proc. Natl. Acad. Sci. USA, 71, 1999.PubMedCrossRefGoogle Scholar
  39. 39).
    Prescott, D.M. and Kirkpatrick, J.B. (1973). Mass enucleation of cultured animal cells, In: Methods in Cell Biol., Vol. VII, p. 189, (ed., D.M. Prescott), Academic Press, New York.Google Scholar
  40. 40).
    Ege, T., Krondahl, U. and Ringertz, N.R. (1971). Introduction of nuclei and micronuclei into cells and enucleated cytoplasms by Sendai virus induced fusion. Exptl. Cell Res., 88, 428.CrossRefGoogle Scholar
  41. 41).
    Ege, T. and Ringertz, N.R. (1975). Viability of cells reconstituted by virus-induced fusion of minicells with anucleate cells. Exptl. Cell Res., 94, 469.PubMedCrossRefGoogle Scholar
  42. 42).
    Lucas, J.J. and Kates, J.R. (1976). The construction of viable nuclear-cytoplasmic hybrid cells by nuclear transplantation. Cell, 7, 397.PubMedCrossRefGoogle Scholar
  43. 43).
    Levine, M.R. and Cox, R.P. (1978). Use of latex particles for analysis of heterokaryon formation and cell fusion. Somatic Cell Gen., 4, 507.CrossRefGoogle Scholar
  44. 44).
    Littlefield, J.W. (1964). Three degrees of guarylic acid-inosinic acid pyrophosphorylase deficiency in mouse fibroblasts. Nature, 203, 1142.PubMedCrossRefGoogle Scholar
  45. 45).
    Szybalski, W., Szybalski, E.H. and Ragni, G. (1962). Genetic studies with human cell lines. Natl. Ca. Inst. Monogr., 7, 75.Google Scholar
  46. 46).
    Krondahl, U., Bols, N., Ege, T., Linder, S. and Ringertz, N.R. (1977). Cells reconstituted from cell fragments of two different species multiply and form colonies. Proc. Natl. Acad. Sci. USA, 74, 606.PubMedCrossRefGoogle Scholar
  47. 47).
    Ringertz, N.R., Krondahl, U. and Coleman, J.R. (1978). Reconstitution of cells by fusion of cell fragments. I. Myogenic expression after fusion of minicells from rat myoblasts (L6) with mouse fibroblast (A9) cytoplasm. Exptl. Cell Res., 113, 233.PubMedCrossRefGoogle Scholar
  48. 48).
    Muggleton-Harris, A.L. and Hayflick, L. (1976). Cellular aging studied by the reconstruction of replicating cells from nuclei and cytoplasms isolated from normal human diploid cells. Exptl. Cell Res., 103, 321.PubMedCrossRefGoogle Scholar
  49. 49).
    Linder, S., Brzeski, H. and Ringertz, N.R. (1979). Phenotypic expression in cybrids derived from teratocarcinoma cells fused with myoblast cytoplasms. Exptl. Cell Res., 120, 1.PubMedCrossRefGoogle Scholar
  50. 50).
    Watanabl, T., Dewey, M.J. and Mintz, B. (1978). Teratocarcinoma cells as vehicles for introducing specific mutant mitochondrial genes into mice. Proc. Natl. Acad. Sci. USA, 75, 5113.CrossRefGoogle Scholar
  51. 51).
    Howell, A.N. and Sager, R. (1978). Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc. Natl. Acad. Sci. USA., 75, 2358.PubMedCrossRefGoogle Scholar
  52. 52).
    Gopalakrishnan, T.V., Thompson, E.B. and Anderson, W.F. (1977). Extinction of hemoglobin inducibility in Friend erythroleukemia cells by fusion with cytoplasm of enucleated mouse neuroblastoma or fibroblast cells. Proc. Natl. Acad. Sci. USA, 74, 2461.CrossRefGoogle Scholar
  53. 53).
    Spolsky, C.M. and Eisenstadt, J.M. (1972). Chloramphenicol-resistant mutants of human HeLa cells. FEBS Lett., 25, 319.PubMedCrossRefGoogle Scholar
  54. 54).
    Kislev, N., Spolsky, C.M. and Eisenstadt, J.M. (1973). Effect of chloramphenicol on the ultrastructure of mitochondria in sensitive and resistant strains of HeLa cells. J. Cell Biol., 57, 571.PubMedCrossRefGoogle Scholar
  55. 55).
    Bunn, C.L., Wallace, D.C and Eisenstadt, J.M. (1974). Cytoplasmic transfer of chloramphenical resistance in mouse tissue culture cells. Proc. Natl. Acad. Sci. USA, 71, 1681.PubMedCrossRefGoogle Scholar
  56. 56).
    Wallace, D.C., Bunn, C.L. and Eisenstadt, J.M. (1975). Cytoplasmic transfer of chloramphenical resistance in human tissue culture cells. J. Cell Biol., 67, 174.PubMedCrossRefGoogle Scholar
  57. 57).
    Shay, J.W. (1977). Selection of reconstituted cells from karyoplasts fused to chloramphenical-resistant cytoplasts. Proc. Natl. Acad. Sci. USA, 74, 2461.PubMedCrossRefGoogle Scholar
  58. 58).
    Kroon, A. (1970). Nuclear and chloroplast control of chloroplast structure and function in Chlamydomonas Reinhardi. In: Control of Organelle Development, p. 13 (ed. P.L. Miller) University Printing House, Cambridge.Google Scholar
  59. 59).
    Towers, N.R., Dixon, H., Kellerman, G.M. and Linnane, A.W. (1972). Biogenesis of Mitochondria. 22. The sensitivity of rat liver mitochondria to antibiotics; a phylogenetic difference between a mammalian system and yeast. Arch. Biochem. Biophys., 151, 361.PubMedCrossRefGoogle Scholar
  60. 60).
    Denslow, N.D. and O’Brien, T.W. (1974). Susceptibility of 55 S mitochondrial ribosomes to antibiotics inhibitory to prokaryotic ribosomes, Lincomycin, Chloramphenical and PA 114 A. Biochem. Biophys. Res. Comm., 57, 9.PubMedCrossRefGoogle Scholar
  61. 61).
    Ruddle, F.H. (1974). Human genetic linkage and gene mapping by somatic cell genetics. In: Somatic Cell Hybridization, p. 1 (ed., R.L. Davidson) Raven Press, New York.Google Scholar
  62. 62).
    Human Gene Mapping 3. Baltimore Conference 1975. Third Intern. Workshop of Human Gene Mapping. Birth Defects: Original Article Series, Vol. XII, No. 7 (The National Found., New York, 1976).Google Scholar
  63. 63).
    Levan, A. (1954). Colchicine-induced C-mitosis in two mouse ascites tumours. Hereditas, 40, 1.CrossRefGoogle Scholar
  64. 64).
    Phillips, S.G. and Phillips, D.M. (1969). Sites of nucleolus production in cultured Chinese hamster cells. J. Cell Biol., 40, 248.PubMedCrossRefGoogle Scholar
  65. 65).
    Stubblefield, E. (1964). DNA synthesis and chromosomal morphology of Chinese hamster cells cultured in media containing N-deacetyl-N-methylcolchisine (colcemid). In: Cytogenetics of Cells in Culture, Vol. III, p. 223.Google Scholar
  66. 66).
    Hernandez-Verdun, D., Bouteille, M., Ege, T. and Ringertz, N.R. (in press). Fine structure of nucleoli in micronucleated cells. Exptl. Cell..Google Scholar
  67. 67).
    Ege, T. and Ringertz, N.R. (1974). Preparation of microcells by enucleation of micronucleate cells. Exptl. Cell Res., 87, 378.PubMedCrossRefGoogle Scholar
  68. 68).
    Sekiguchi, T., Shelton, K. and Ringertz, N.R. (1978). DNA-content of microcells prepared from rat, kangaroo and mouse cells. Exptl. Cell Res., 113, 247.PubMedCrossRefGoogle Scholar
  69. 69).
    Hecht, T.T., Ruddle, N.H. and Ruddle, F.H. (1975). Analysis of differentiating B lymphocytes from mouse spleens. Fed. Proc., 34, 995.Google Scholar
  70. 70).
    Fournier, R.E.K. and Ruddle, F.H. (1977). Microcell-mediated transfer of murine chromosomes into mouse, Chinese hamster, and human somatic cells. Proc. Natl. Acad. Sci. USA, 74, 319.PubMedCrossRefGoogle Scholar
  71. 71).
    Fournier, R.E.K. and Ruddle, F.H. (1977). Stable association of the human transgenome and host murine chromosomes demonstrated with trispecific microcell hybrids. Proc. Natl. Acad. Sci. USA, 74, 3937.PubMedCrossRefGoogle Scholar
  72. 72).
    Johnson, R.T., Mullinger, A.M. and Skaer, R.J. (1975). Pertubation of mammalian cell division. I. Human mini segregants derived from mitotic cells. Proc. R. Soc. B., 189, 591.CrossRefGoogle Scholar
  73. 73).
    Schor, S.L., Johnson, R.T., Mullinger, A.M. (1975). Pertubation of mammalian cell division. II. Studies of the isolation and charecterization of human mini segregant cells. J. Cell Sci., 19, 281.PubMedGoogle Scholar
  74. 74).
    Tourian, A., Johnson, R.T., Burg, K., Nicolson, S.W. and Sperling, K. (1978). Transfer of human chromosomes via human mini segregant cells into mouse cells and the quantitation of the expression of hypoxanthine phosphoribosyltransferase in the hybrids. J. of Cell Sci., 30, 193.Google Scholar
  75. 75).
    Baechetti, S. and Graham, F.L. (1977). Transfer of the gene for thymidine kinase to thymidine-kinase deficient human cells by purified Herpes Simplex Viral DNA, Proc. Natl. Acad. Sci. USA, 74, 1590.CrossRefGoogle Scholar
  76. 76).
    Maitland, N.J. and Mcdougall, J.K. (1977). Biochemical transformation of mouse cells by fragments of Herpes Simplex Virus DNA, Cell, 11, 233.PubMedCrossRefGoogle Scholar
  77. 77).
    Wigler, M., Silverstein, S., Lee, L.-S., Pellicer, A., Cheng, Y.-C. and Axel, R. (1977). Transfer of purified Herpes virus thymidine kinase gene to cultured mouse cells. Cell, 11, 223.PubMedCrossRefGoogle Scholar
  78. 78).
    Mcbride, O.W. and Ozer, H.L. (1973). Transfer of genetic information by purified metaphase chromosomes. Proc. Natl. Acad. Sci. USA, 70, 1257.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • T. Ege
    • 1
  1. 1.Department of Medical Cell GeneticsMedical Nobel Institute, Karolinska InstitutetStockholm 60Sweden

Personalised recommendations