Microinjection of Somatic Cells with Micropipettes and PEG-Erythrocyte Ghost Mediated Microinjection

  • J. E. Celis
  • K. Kaltoft
  • R. Bravo
Part of the NATO Advanced Study Institutes Series book series (NSSA, volume 31)


The development of techniques to introduce macromolecules into living somatic cells such as the direct microinjection with micropipettes (1, 2), the red cell mediated microinjection (3–7) and the liposome mediated injection (8–10) has opened the possibility of using the cell as a test tube to study complex biological phenomena that are not amenable to experimentation using conventional in vitro systems (11–25).


HeLa Cell Somatic Cell Recipient Cell Sendai Virus Erythrocyte Ghost 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    Graessmann, A. (1968). Doctoral dissertation, Free University of Berlin.Google Scholar
  2. 2).
    Diacumakos, E.G., Holland, S. and Pecora, P. (1970). A microsurgical methodology for human cells in vitro: Evolution and applications. Proc. Natl. Acad. Sci., 65, 911.PubMedCrossRefGoogle Scholar
  3. 3).
    Furusawa, M., Nishimura, T., Yamaizumi, M. and Okada, Y. (1974). Injection of foreign substances into single cells by cell fusion. Nature, 249, 449.PubMedCrossRefGoogle Scholar
  4. 4).
    Loyter, A., Zakai, N. and Kulka, R.G. (1975). “Ultramicroinjection” of macromolecules or small particles into animal cells. J. Cell Biol., 66, 292.PubMedCrossRefGoogle Scholar
  5. 5).
    Schlegel, R.A. and Rechsteiner, M.C. (1975). Microinjection of thymidine kinase and bovine serum albumin into mammalian cells by fusion with red blood cells. Cell, 5, 371.PubMedCrossRefGoogle Scholar
  6. 6).
    Kriegler, M.P. and Livingston, D.M. (1977). Chemically facilitated microinjection of proteins into intact monolayers of tissue culture cells. Somat. Cell Genet., 3, 603.PubMedCrossRefGoogle Scholar
  7. 7).
    Kaltoft, K. and Celis, J.E. (1978). Ghost mediated transfer of human hypoxanthine-guanine phosphoribosyltransferase into deficient Chinese hamster ovary cells by means of polyethylene glycol-induced fusion. Exptl. Cell Res., 115, 423.PubMedCrossRefGoogle Scholar
  8. 8).
    Gregoriadis, G. (1976). Carrier potential of liposomes in biology and medicine. 1. Eng. J. Med., 295, 704.CrossRefGoogle Scholar
  9. 9).
    Tyrell, D., Heath, T., Colley, C. and Ryman, B. (1976). New aspects of liposomes. Biochim., Biophys. Acta, 457, 259.Google Scholar
  10. 10).
    Poste, G., Papahadjopoulos, D. and Veil, W. (1976). In: Methods in Cell Biology. Lipid vesicles as carriers for introducing biologically active materials into cells (ed., D.M. Presscott), Academic Press, New York, 14, 33.Google Scholar
  11. 11).
    Graessmann, M. and Graessmann, A. (1976). “Early” simian-virus-40 specific RNA contains information for tumor antigen formation and chromatin replication. Proc. Natl. Acad. Sci., 73, 366.PubMedCrossRefGoogle Scholar
  12. 12).
    Kaltoft, K., Zeuthen, J., Engbæk, F., Piper, P.W. and Celis, J.E. (1976). Transfer of tRNAs to somatic cells mediated by Sendai virus induced fusion. Proc. Natl. Acad. Sci., 73, 2793.PubMedCrossRefGoogle Scholar
  13. 13).
    Celis, J.E. (1977). Injection of tRNAs into somatic cells. Search for in vivo systems to assay potential nonsense mutations in somatic cells. Brookhaven Symp. Biol., 29, 178.PubMedGoogle Scholar
  14. 14).
    Graessmann, A., Graessmann, M. and Mueller, C. (1977). Simian virus 40 gene expression in permissive, non-permissive and virus-resistant cells. Brookhaven Symp. Biol., 29, 197.PubMedGoogle Scholar
  15. 15).
    Capecchi, M.R., Von der Haar, R.A., Capecchi, N.E. and Sveda, M.M. (1977). The isolation of a suppresible nonsense mutant in mammalian cells. Cell, 12, 371.PubMedCrossRefGoogle Scholar
  16. 16).
    Stacey, D.W., Alfrey, V.G. and Hanafusa, H. (1977). Microinjection analysis of envelope-glycoprotein messenger activities of avian leukosis viral RNAs. Proc. Natl. Acad. Sci., 74, 1614.PubMedCrossRefGoogle Scholar
  17. 17).
    Stacey, D.W. and Alfrey, V.G. (1977). Evidence for the autophagy of microinjected proteins in HeLa cells. J. Cell Biol., 75, 807.PubMedCrossRefGoogle Scholar
  18. 18).
    McClain, D.A., Maness, P.F. and Edelman, G.M. (1978). Assay for early cytoplasmic effect of the src gene product of Rous sarcoma virus. Proc. Natl. Acad. Sci., 75, 2750.PubMedCrossRefGoogle Scholar
  19. 19).
    Tjian, R., Fey, G. and Graessmann, A. (1978). Biological activity of purified simian virus 40 T antigen proteins. Proc. Natl. Acad. Sci., 75, 1279.PubMedCrossRefGoogle Scholar
  20. 20).
    Kriegler, M.P., Griffin, J.D. and Livingston, D.M. (1978). Phenotypic complementation of the SV40 ts A mutant defect in viral DNA synthesis following microinjection of SV40 T antigen. Cell, 14, 983.PubMedCrossRefGoogle Scholar
  21. 21).
    Rechsteiner, M. and Kuehl, L. (1979). Microinjection of the non-histone chromosomal protein HMG 1 into bovine fibroblasts and HeLa cells. Cell, 16, 901.PubMedCrossRefGoogle Scholar
  22. 22).
    Celis, J.E., Kaltoft, K., Celis, A., Fenwick, R. and Caskey, C.T. (1979). Microinjection of tRNAs into somatic cells. In: “Nonsense mutations and tRNA suppressors”, (eds., J.E. Celis and J.D. Smith), Academic Press, London, p. 255.Google Scholar
  23. 23).
    Feramisco, J.R. (1979). Microinjection of fluorescently labelled α-actinin into living fibroblasts. Proc. Natl. Acad. Sci., 76, 3967.PubMedCrossRefGoogle Scholar
  24. 24).
    Kreis, T.E., Winterhalter, K.H. and Birchmeier, W. (1979). In vivo distribution and turnover of fluorescent labeled actin microinjected into human fibroblasts. Proc. Natl. Acad. Sci. USA, 76, 3814.PubMedCrossRefGoogle Scholar
  25. 25).
    Liu, C.P., Slate, D.L., Gravel, R. and Ruddle, F.H. (1979). Biological detection of specific mRNA molecules by microinjection. Proc. Natl. Acad. Sci. USA, 76, 4503.PubMedCrossRefGoogle Scholar
  26. 26).
    Stacey, D.W. and Alfrey, V.G. (1976). Microinjection studies of duck globin messenger RNA translation in human and avian cells. Cell, 9, 725.PubMedCrossRefGoogle Scholar
  27. 27).
    Bravo, R. and Celis, J.E. (1979), Expt. Cell Res., in press.Google Scholar
  28. 28).
    Celis, J.E., Kaltoft, K. and Bravo, R. (1979). Microinjection of somatic cells. In: “Introduction of macromolecules into viable cells”, (eds., G. Rovera, R. Baserga and C. Croce), Alan R. Liss. Inc., in press.Google Scholar
  29. 29).
    Graessmann, A., Graessmann, M. and Mueller, C. (1977). Regulatory function of simian virus 40 DNA replication for late viral gene expression. Proc. Natl. Acad. Sci., 74, 4831.PubMedCrossRefGoogle Scholar
  30. 30).
    Graessmann, A., Graessmann, M. and Mueller, C. (1979). In: “Introduction of macromolecules into viable cells”, (eds., G. Rovera and C. Croce), Alan K. Liss, Inc., in press.Google Scholar
  31. 31).
    Diacumakos, E.G., Holland, S. and Pecora, P. (1971). Chromosome displacement in and extraction from human cells at different mitotic stages. Nature, 232, 33.PubMedCrossRefGoogle Scholar
  32. 32).
    Graessmann, A. and Graessmann, M. (1971). Über die Bildung von Melanin in Muskelzellen nach der direkten Übertragung von RNA aus Harding-Passey-Melanonomzellen. Hoppe-Seyler’s Z. Physiol. Chem., 352, 527.CrossRefGoogle Scholar
  33. 33).
    Yamamoto, F. and Furuwasa, M. (1978). A simple microinjection technique not employing a micromanipulator. Exptl. Cell Res., 117, 441.PubMedCrossRefGoogle Scholar
  34. 34).
    Wehland, J., Osborn, M. and Weber, K. (1977). Phalloidin-induced actin polymerization in the cytoplasm of cultured cells interferes with cell locomotion and growth. Proc. Natl. Acad. Sci., 74, 5613.PubMedCrossRefGoogle Scholar
  35. 35).
    O’Farrell, P.Z., Goodman, H.M. and O’Farrell, P.H. (1977). High resolution of two-dimensional electrophoresis of basic as well as acidic proteins. Cell, 12, 1133.PubMedCrossRefGoogle Scholar
  36. 36).
    Diacumakos, E.G. (1973). Methods for micromanipulation of human somatic cells in culture. Methods Cell Biol., 8, 287.Google Scholar
  37. 37).
    O’Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250, 4007.PubMedGoogle Scholar
  38. 38).
    Bravo, R. and Celis, J.E. (1979). A search for differential polypeptide synthesis through the cell cycle of HeLa cells. J. Cell Biol., in press.Google Scholar
  39. 39).
    Laskey, R.A. and Mills, A.D. (1975). Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur. J. Biochem., 56, 335.PubMedCrossRefGoogle Scholar
  40. 40).
    Huez, G.A., Bruck, C., Portetelle, D. and Cheuter, Y. (1979). Translation of rabbit globin mRNA upon injection into fused HeLa cells. FEBS Lett., in press.Google Scholar
  41. 41).
    Graessmann, A., Graessmann, M. and Mueller, C. (1979). Fused cells are suited for microinjection. Biochem. Biophys. Res. Commun., 88, 428.PubMedCrossRefGoogle Scholar
  42. 42).
    Ostro, M.J., Giacomon, D., Lavelle, D., Paxton, W. and Dray, S. (1978). Evidence for translation of messenger-RNA after liposome-mediated insertion into a human cell line. Nature, 274, 923.CrossRefGoogle Scholar
  43. 43).
    Dimitriadis, G.J. (1978). Evidence for translation of rabbit globin mRNA after liposome mediated insertion into a human cell line. Nature, 274, 921.CrossRefGoogle Scholar
  44. 44).
    Darnell, J.E. (1978). Ribonucelic acids from animal cells. Bacteriol. Rev., 32, 262.Google Scholar
  45. 45).
    Wasserman, M., Zakai, N., Loyter, A. and Kulka, R.G. (1976). A quantitative study of ultramicroinjection of macromolecules into animal cells. Cell, 7, 551.PubMedCrossRefGoogle Scholar
  46. 46).
    Wille, W., and Willecke, K. (1976). Retention of purified proteins in resealed human erythrocyte ghosts and transfer by fusion into cultured murine recipient cells. FEBS Lett., 65, 59.PubMedCrossRefGoogle Scholar
  47. 47).
    Yamaizumi, M., Uchida, T., Okada, Y. and Furusawa, M. (1978). Neutralization of difteria toxin in living cells by microinjection of antifragment A contained within resealed erythrocyte ghosts. Cell, 13, 227.PubMedCrossRefGoogle Scholar
  48. 48).
    Yamaizumi, M., Uchida, T., Okada, Y., Furusawa, M. and Mitsui, H. (1978). Rapid transfer of non-histone chromosomal proteins to the nucleus of living cells. Nature, 273, 782.PubMedCrossRefGoogle Scholar
  49. 49).
    Schlegel, R.A., Iversen, P. and Rechsteiner, M.C. (1978). The turnover of tRNAs microinjected into animal cells. Nucl. Acids Res., 5, 3715.PubMedCrossRefGoogle Scholar
  50. 50).
    Pontecorvo, G., Riddle, P.N. and Hales, A. (1977). Time and mode of fusion of human fibroblasts treated with polyethylene glycol (PEG). Nature, 265, 257.PubMedCrossRefGoogle Scholar
  51. 51).
    Köhler, G. and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256, 495.PubMedCrossRefGoogle Scholar
  52. 52).
    Mercer, U.C. and Schlegel, R.A. (1979). Phytohemagglutinin enhancement of cell fusion reduces polyethylene glycol cytotoxicity. Exp. Cell Res., 120, 417.PubMedCrossRefGoogle Scholar
  53. 53).
    Schneiderman, S., Farber, J.L. and Baserga, R. (1979). A simple method of decreasing the toxicity of polyethylene glycol in mammalian cell hybridization. Somat. Cell Genet., 5, 263.PubMedCrossRefGoogle Scholar
  54. 54).
    Norwood, T.H., Zeigler, C.J. and Martin, G.M. (1976). Dimethyl sulfoxide enhances polyethylene glycol-mediated somatic cell fusion. Somat. Cell Genet., 2, 263.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. E. Celis
    • 1
  • K. Kaltoft
    • 1
  • R. Bravo
    • 1
  1. 1.Division of Biostructural Chemistry, Department of ChemistryAarhus UniversityAarhus CDenmark

Personalised recommendations