Advertisement

The Role of MuLV Receptors on T-Lymphoma Cells in Lymphoma Cell Proliferation

  • Michael S. McGrath
  • Eric Pillemer
  • Dale Kooistra
  • Irving L. Weissman
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 11)

Abstract

The induction of thymic lymphocytic neoplasms in mice by murine leukemia viruses (MuLV) involves a complex series of interactions between endogenous retroviral gene sequences and target cells in the thymus (Kaplan, 1967). This virus-cell interaction is characterized by an exquisite target cell specificity for transformation, as compared to infection. Thus, some highly purified retroviruses (e.g., Moloney) can be obtained which can infect both mouse fibroblasts and thymic (or T) cells, but which are capable of transforming only a limited subset of thymocytes (N. Rosenberg, personal communication; Buchhagen et al., 1976). Since isolates from leukemic cells infect fibroblasts without transformation, and isolates from fibroblasts can both infect and transform some T lymphocytes, it is apparent that some very special relationship must exist between the transforming virus and its target cell (reviewed by Weissman and Baird, 1977).

Keywords

Lymphoma Cell Murine Leukemia Virus Mixed Leukocyte Reaction Thymic Lymphoma Normal Thymocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baird, S., 1979, Antigenic properties and molecular weights of murine leukemia virus-binding proteins, J. Immunol. 122: 1389–1396.PubMedGoogle Scholar
  2. Baltimore, D., 1974, Tumor viruses, Cold Spring Harbor Symp. Quant. Biol. 39: 1187.CrossRefGoogle Scholar
  3. Besmer, P., and Baltimore, D., 1977, Mechanism of restriction of ecotropic and xenotropic murine leukemia viruses and formation of pseudotypes between the two viruses, J. Virol. 21: 965–973.PubMedGoogle Scholar
  4. Buchhagen, D. L., Pincus, T., Stutman, O., and Fleissner, E., 1976, Leukemogenic activity of murine type C viruses after long-term passage in vitro, Int. J. Cancer 18: 835–842.PubMedCrossRefGoogle Scholar
  5. Davies, A. J. S., Leuchars, E., Wallis, E., and Koller, P. C., 1966, The mitotic response of thymus-derived cells to antigenic stimulus, Transplantation 4: 438.PubMedCrossRefGoogle Scholar
  6. Decléve, A., Travis, M., Weissman, I. L., Lieberman, M., and Kaplan, H. S., 1975, Focal infection and transformation in situ of thymus cell subclasses by a thymotropic murine leukemia virus (RadLV), Cancer Res. 35: 3585.PubMedGoogle Scholar
  7. Decléve, A., Lieberman, M., Ihle, J. N., and Kaplan, H. S., 1977b, Biological and serological characterization of the C-type RNA viruses isolated from the C57BL/Ka strain of mice. III. Characterization of the isolates and their interactions in vitro and in vivo, in: Symposium on Radiation-Induced Leukemogenesis and Related Viruses ( J. F. Duplan, ed.), pp. 247–264, North-Holland, Amsterdam.Google Scholar
  8. DeLarco, J., and Todaro, G. J., 1976, Membrane receptors for murine leukemia viruses: Characterization using the purified viral envelope glycoprotein, gp71, Cell 8: 365–371.PubMedCrossRefGoogle Scholar
  9. Elder, J., Gautsch, J., Jensen, R., Lerner, R., Hartley, J., and Rowe, W. P., 1977, Biochemical evidence that MCF murine leukemia viruses are envelope (env) gene recombinants, Proc. Natl. Acad. Sci. U.S.A. 74: 4676.PubMedCrossRefGoogle Scholar
  10. Fathman, C. G., and Nabholz, M., 1977, In vitro secondary mixed leukocyte reaction (MLR). II. Interaction MLR determinants expressed by F, cells, Eur. J. Immunol. 7: 370–374.PubMedCrossRefGoogle Scholar
  11. Fathman, C. G., and Weissman, I. L., 1980, Production of alloreactive T cell lymphomas, Nature (London) 283: 404.CrossRefGoogle Scholar
  12. Fox, R., and Weissman, I. L., 1979, Absence of unexpected H-2 allo antigens on a murine lymphoma, J. Immunol. 123: 1736.PubMedGoogle Scholar
  13. Frankel, A., Neubauer, R., and Fischinger, P., 1976, Fractionation of DNA mucleotide. Transcripts from Moloney sarcoma virus and isolation of sarcoma virus specific complementary DNA, J. Virol. 18: 481–490.PubMedGoogle Scholar
  14. Galfré, G., Howe, S. C., Milstein, C., Butcher, G. W., and Howard, J. C., 1977, Antibodies to major histocompatibility antigens produced by hybrid cell lines, Nature (London) 266: 550–552.CrossRefGoogle Scholar
  15. Gross, L., 1951, “Spontaneous” leukemia developing in C3H mice following inoculation in infancy with AKR leukemic extracts or AK embryos, Proc. Soc. Exp. Biol. Med. 76:27.PubMedGoogle Scholar
  16. Hanafusa, H., Avian RNA tumor viruses, 1974, in: Cancer: A Comprehensive Treatise, Vol. 2 (F. F. Becker ed.), p. 49, Plenum Press, New York.Google Scholar
  17. Haran-Ghera, N., 1977, Target cells involved in radiation and radiation leukemia virus leukemogenesis, in: Symposium on Radiation-Induced Leukemogenesis and Related Viruses ( J. F. Duplan, ed.), North-Holland, Amsterdam.Google Scholar
  18. Hartley, J. W., Wolford, H., Old, N. J., and Rowe, W. P., 1977, A new class of murine leukemia virus associated with development of spontaneous lymphomas, Proc. Natl. Acad. Sci. U.S.A. 74: 789–792.PubMedCrossRefGoogle Scholar
  19. Kaplan, H. S., 1967, On the natural history of the murine leukemias: Presidential address, Cancer Res. 27: 1325–1340.PubMedGoogle Scholar
  20. Kawashima, K., Ikeda, H., Stockert, E., Takahashi, T., and Old, L., 1976, Age related changes in cell surface antigens of preleukemic AKR thymocytes, J. Exp. Med. 144: 193.PubMedCrossRefGoogle Scholar
  21. Krishan, A., 1975, Rapid flow cytofluorometric analysis of mammalian cell cycle by propidium iodide staining, J. Cell Biol. 66: 188–193.PubMedCrossRefGoogle Scholar
  22. Lieberman, M., Decléve, A., Ihle, J., Kaplan, H. S., 1979, Rescue of a thymotropic. leukemogenic C-type virus from cultured nonproducer lymphoma cells of strain C57BL/Ka mice, Virology 97: 12–21.PubMedCrossRefGoogle Scholar
  23. Littlefield, J. W., 1964, Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants, Science 145: 709–710.PubMedCrossRefGoogle Scholar
  24. Loken, M. L., and Herzenberg, L. A., 1975, Analysis of cell populations with a fluorescence activated cell sorter, Ann. N.Y. Acad. Sci. 254: 163.PubMedCrossRefGoogle Scholar
  25. Loken, M., Parks, D., and Herzenberg, L. A., 1977, Two color immunofluorescence using a fluorescence activated cell sorter, J. Histochem. Cytochem. 25: 899.PubMedCrossRefGoogle Scholar
  26. McGrath, M. S., and Weissman, I. L., 1978, A receptor mediated model of viral leukemogenesis: Hypothesis and experiments, in: Cold Spring Harbor Symposium: Normal and Neoplastic Hematopoietic Cell Differentiation, p. 577, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  27. McGrath, M. S., and Weissman, I. L., 1979, AKR leukemogenesis: Identification and biological significance of thymic lymphoma receptors for AKR retroviruses, Cell 17: 65–75.PubMedCrossRefGoogle Scholar
  28. McGrath, M. S., Lieberman, M., Decléve, A., Kaplan, H. S., and Weissman, I. L., 1978a, The specificity of cell surface virus receptors on RadLV and radiation-induced thymic lymphomas, J. Virol. 28: 819.PubMedGoogle Scholar
  29. McGrath, M. S., Weissman, I. L., Baird, S., Raschke. W., Decléve, A., Lieberman, M., and Kaplan, H. S., 1978b, Each T-cell lymphoma induced by a particular murine leukemia virus bears surface receptors specific for that virus, in: The Molecular Basis of Cell-Cell Interaction, The National Foundation-March of Dimes Birth Defects: Original Articles Series, XIV ( R. Lerner and D. Bergsma, eds.) pp. 349–361, Alan R. Liss, New York.Google Scholar
  30. McGrath, M. S., Witte, O., Pincus, T., and Weissman, I. L., 1978c, Retrovirus purification: Method which conserves envelope gylcoprotein and maximizes infectivity, J. Virol. 25: 923.PubMedGoogle Scholar
  31. McGrath, M. S., Pillemer, E., Kooistra, D., Jacobs, S., Jerabek, L., and Weissman, I. L., 1979, T lymphoma retrovirus receptors and control of T lymphoma cell proliferation, Cold Spring Harbor Symposium on Quantitative Biology: Viral Oncogenes, Vol. 44, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  32. McGrath, M. S., Pillemer, E., and Weissman, I. L., 1980, Murine leukemogenesis: Monoclonal antibodies to T cell determinants which arrest T lymphoma cell proliferation, Nature (London) 285: 259–261.CrossRefGoogle Scholar
  33. Metcalf, D., 1966a, Histologic and transplantation studies on preleukemic thymus of the AKR mouse, J. Natl. Cancer Inst. 37: 425.PubMedGoogle Scholar
  34. Metcalf, D., 1966b, The thymus, in: Recent Results in Cancer Research ( P. Rentchnick, ed.), pp. 87–144, Springer-Verlag, New York.Google Scholar
  35. Morgan, D. A., Ruscetti, F. W., and Gallo, R. C., 1976, Selective in vitro growth of T lymphocytes from normal human bone marrows, Science 193: 1007.PubMedCrossRefGoogle Scholar
  36. Niwa, O., Decléve, A., and Kaplan, H. S., 1976, Conversion of restrictive mouse cells to permissiveness during sequential and mixed double infection by murine leukemia viruses, Virology 74: 140–153.PubMedCrossRefGoogle Scholar
  37. Nowinski, R. C., and Doyle, T., 1977, Cellular changes in the thymuses of preleukemic AKR mice: Correlation with changes in the expression of murine leukemia viruses, Cell 12: 341.PubMedCrossRefGoogle Scholar
  38. Nowinski, R. C., and Hays, E. F., 1978, Oncogenicity of AKR endogenous leukemia viruses, J. Virol. 27: 13.PubMedGoogle Scholar
  39. Nowinski, R. C., Hays, E. R., Doyle, T., Linkhart, S., Medeiros, E., and Pickering, R., 1977, Oncornaviruses produced by murine leukemia cells in culture, Virology 81: 363.PubMedCrossRefGoogle Scholar
  40. Rommelaere, J., Faller, D. V., and Hopkins, N., 1978, Characterization and mapping of T1-resistant oligonucleotides derived from the genome of AKR and MCF murine leukemia viruses, Proc. Natl. Acad. Sci. U.S.A. 75: 495.PubMedCrossRefGoogle Scholar
  41. Rowe, W. P., and Pincus, T., 1972, Quantitative studies of naturally occurring murine leukemia virus infection of AKR mice, J. Exp. Med. 135: 429.PubMedCrossRefGoogle Scholar
  42. Staal, S. F., Hartley, J. W., and Rowe, W. P., 1977, Isolation of transforming murine leukemia viruses from mice with a high incidence of spontaneous lymphoma, Proc. Natl. Acad. Sci. U.S.A. 74: 3065.PubMedCrossRefGoogle Scholar
  43. Siegler, R., and Rich, M. A., 1963, Unilateral histogenesis of AKR thymic lymphoma, Cancer Res. 23: 1669.PubMedGoogle Scholar
  44. Todaro, G. J., 1977, RNA tumor viruses (virogenes) and the transforming genes (oncogenes): Genetic transmission, infectious spread, and modes of expression in: Origins of Human Cancer (H. Hiatt, J. D. Watson, and J. A. Winsten, eds.), pp. 1169–1196, Cold Spring Harbor Press, Cold Spring Harbor, N.Y.Google Scholar
  45. Varmus, H. E., Spector, D. H., Deng, C. T., Padgett, T., Bishop, J. M., Steheling, D., and Stubblefield, E., 1977, The function and origin of the transforming gene of avian sarcoma virus, in: Origins of Human Cancer ( H. Hiatt, J. D. Watson, and J. A. Winston, eds.) Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  46. Weissman, I. L., and Baird, S., 1977, Oncornavirus leukemogenesis as a model for selective neoplastic transformation, in: Life Sciences Research Report 7, Neoplastic Transformation: Mechanisms and Consequences ( H. Koprowski, ed.), p. 135, Dahlem Konferenzen, Berlin.Google Scholar
  47. Weissman, I. L., Baird, S., Gardner, R. L., Papaioannou, V. E., Raschke, W., 1977, Normal and neoplastic maturation of T-lineage lymphocytes, Cold Spring Harbor Symp. Quant. Biol. 41: 9–21.PubMedCrossRefGoogle Scholar
  48. Witte, O. N., and Weissman, I. L., 1974, Polypeptides of moloney sarcomaleukemia virions: Their resolution and incorporation into extracellular virions, Virology 61: 575–587.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Michael S. McGrath
    • 1
  • Eric Pillemer
    • 1
  • Dale Kooistra
    • 1
  • Irving L. Weissman
    • 1
  1. 1.Laboratory of Experimental Oncology Department of PathologyStanford UniversityStanfordUSA

Personalised recommendations