Divalent Cation-Dependent Deposits in Paramecium

  • Edna S. Kaneshiro
  • Gregory W. Fisher


In 1972 Oschman and Wall observed the presence of electron-dense deposits (EDDs) along the plasma membranes of intestinal cells (1). They systematically tested the components of their fixative solutions and concluded that the combination of glutaraldehyde and millimolar concentrations of several divalent cations formed these deposits. Using what has become known as the Oschman and Wall fixation technique, most commonly employing glutaraldehyde and CaCl2, several workers have since reported the presence of similar EDDs which often occur at specific sites where Ca2+ action has been implicated. Examples of these reports are given in Table 1. The deposits characteristically form on the cytoplasmic side of surface membranes. X-ray microprobe analyses show that deposits contain Ca2+ (6,7,9,12,14,15,18). Sr2+, Ba2+, Co2+, Mn2+, Fe2+, Zn2+, Ni2+, and Mg2+ can also produce deposits but all monovalent and trivalent cations tested do not (1–3,11,13,14). Other Ca2+ salts such as Ca(NO3) produce EDDs, hence it is the cation and not the anion which is important for deposit formation (14). Deposits can be classified under at least two different groups—those associated with membranes and those contained within organelles with no apparent associations with membranes. In some cases membrane deposit sites are associated with sites known to contain intramembranous particles (IMPs) within the membrane bilayer and fibrillar material attached to the bilayer (8,11,14).


Basal Body Ciliary Activity Ciliary Membrane Microtubule Doublet Radial Spoke 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Oschman and B. J. Wall, Calcium binding to intestinal membranes, J. Cell Biol. 55, 58–73 (1972).CrossRefGoogle Scholar
  2. 2.
    A. L. Politoff, S. Rose, and G. D. Pappas, The calcium binding sites of synaptic vesicles of the frog sartorius neuromuscular junction, J. Cell Biol. 61, 818–823 (1974).CrossRefGoogle Scholar
  3. 3.
    G. D. Pappas and S. Rose, Localization of calcium deposits in the frog neuromuscular junction at rest and following stimulation, Brain Res. 103, 362–365 (1976).CrossRefGoogle Scholar
  4. 4.
    T. P. Bohan, et al., Electron-dense particle in cholinergic synaptic vesicles, Nature (London) 244, 32–34 (1973).CrossRefGoogle Scholar
  5. 5.
    A. F. Boyne, T. P. Bohan, and T. H. Williams, Effects of calcium-containing fixation solutions on cholinergic synaptic vesicles, J. Cell Biol. 63, 780–795 (1974).CrossRefGoogle Scholar
  6. 6.
    J. L. Oschman, et al., Association of calcium with membranes of squid giant axon, J. Cell. Biol. 61, 156–165 (1974).CrossRefGoogle Scholar
  7. 7.
    D. E. Hillman and R. Llinás, Calcium-containing electron-dense structures in the axons of the squid giant synapse, J. Cell Biol. 61, 146–155 (1974).CrossRefGoogle Scholar
  8. 8.
    W. J. Larsen, Opaque deposits on gap junction membranes after glutaraldehyde-calcium fixation, J. Cell Biol. 67, 801–813 (1974).CrossRefGoogle Scholar
  9. 9.
    R. J. Skaer, P. D. Peters, and J. P. Emmines, The localization of calcium and phosphorus in human platelets, J. Cell Sci. 15, 679–692 (1974).Google Scholar
  10. 10.
    J. H. Martin, F. L. Carson, and G. J. Race, Calcium-containing platelet granules, J. Cell Biol. 60, 775–777 (1974).CrossRefGoogle Scholar
  11. 11.
    H. Plattner, Ciliary granule plaques: Membrane-intercalated particle aggregates associated with Ca2+-binding sites in Paramecium, J. Cell Sci. 18, 257–269 (1975).Google Scholar
  12. 12.
    H. Plattner and S. Fuchs, X-ray microanalysis of calcium binding sites in Paramecium, Histochemistry 45, 23–47 (1975).CrossRefGoogle Scholar
  13. 13.
    G. W. Fisher and E. S. Kaneshiro, Ultrastructural localization of calcium deposits in cilia of Paramecium aurelia, J. Cell Biol. 67, 115a (1975).Google Scholar
  14. 14.
    G. Fisher, E. S. Kaneshiro, and P. D. Peters, Divalent cation affinity sites in Paramecium aurelia, J. Cell Biol. 69, 429–442 (1976).CrossRefGoogle Scholar
  15. 15.
    T. Tsuchiya, Electron microscopy and electron probe analysis of the Ca-binding sites in the cilia of Paramecium caudatum, Experientia 32, 1176–1177 (1976).CrossRefGoogle Scholar
  16. 16.
    T. Tsuchiya and K. Takahashi, Localization of possible calcium-binding sites in the cilia of Paramecium caudatum, J. Protozool. 23, 523–526 (1976).Google Scholar
  17. 17.
    A. Przelecka, A. Sobota, and M. Brutkowska, A characteristic pattern of Ca-dependent deposits in cilia of Tetrahymena pyriformis GL, Bull. Acad. Polish Sci. (Ser. Sci. Biol.) 25, 183–186 (1977).Google Scholar
  18. 18.
    P. Gambetti et al., Calcium-containing structures in vertebrate glial cells. Ultrastructural and microprobe analysis, J. Cell Biol. 64, 322–330 (1975).CrossRefGoogle Scholar
  19. 19.
    P. Stanka, Electron microscope study on the occurrence of electron-dense deposits at the cell membrane of chicken erythrocytes, Cell Tissue Res. 156, 223–228 (1975).CrossRefGoogle Scholar
  20. 20.
    G. W. Fisher and L. Rebhun, Unpublished observations.Google Scholar
  21. 21.
    L. L. Costantin, C. Franzini-Armstrong, and R. J. Podolsky, Localization of calcium-accumulating structures in striated muscle fibers, Science 147, 158–160 (1965).CrossRefGoogle Scholar
  22. 22.
    M. E. Stoeckel, et al., Subcellular localization of calcium in the mouse hypophysis. I. Calcium distribution in the adeno- and neurohypophysis under normal conditions, Cell Tissue Res. 157, 307–322 (1975).CrossRefGoogle Scholar
  23. 23.
    P. Satir and N. B. Gilula, The cell junction in a lamellibranch gill ciliated epithelium. Localization of pyroantimonate precipitate, J. Cell Biol. 47, 468–487 (1970).CrossRefGoogle Scholar
  24. 24.
    S. E. Solomon, J. R. Fryer, and T. Baird, The ultrastructural localization of calcium in the avian shell gland, J. Microsc. 105, 215–222 (1975).CrossRefGoogle Scholar
  25. 25.
    H. Komnick, Electronenmikroscopische localisation von Na+ und Cl- in Zellen und Geweben, Protoplasma 55, 414–418 (1962).CrossRefGoogle Scholar
  26. 26.
    R. E. Bulger, Use of potassium pyroantimonate in the localization of sodium ions in rat kidney tissue, J. Cell Biol. 40, 79–94 (1969).CrossRefGoogle Scholar
  27. 27.
    M. J. Legato and G. A. Langer, The subcellular localization of calcium ion in mammalian myocardium, J. Cell Biol. 41, 401–423 (1969).CrossRefGoogle Scholar
  28. 28.
    C. J. Tandler, C. M. Libanati, and C. A. Sanchis, The intracellular localization of inorganic cations with potassium pyroantimonate, J. Cell Biol. 45, 355–366 (1970).CrossRefGoogle Scholar
  29. 29.
    R. L. Klein, S. Yen, and A. Thureson-Klein, Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy, J. Histochem. Cytochem. 20, 65–75 (1972).CrossRefGoogle Scholar
  30. 30.
    G. Debbas et al., Electron microscopic localization of calcium in vascular smooth muscle, Anat. Rec. 182, 447–472 (1975).CrossRefGoogle Scholar
  31. 31.
    R. T. Parmley, J. A. V. Simson, and S. S. Spicer, Unique deposits in mast cells fixed with pyroantimonate osmium tetroxide, Exp. Mol. Pathol. 22, 252–259 (1975).CrossRefGoogle Scholar
  32. 32.
    J. A. V. Simson and S. S. Spicer, Selective subcellular localization of cations with variants of the potassium (pyro)antimonate technique, J. Histochem. Cytochem. 23, 575–598 (1975).CrossRefGoogle Scholar
  33. 33.
    P. S. Nobel and S. Murakami, Electron microscopic evidence for the location and amount of ion accumulation by spinach chloroplasts, J. Cell Biol. 32, 209–211 (1967).CrossRefGoogle Scholar
  34. 34.
    P. S. Nobel, S. Murakami, and A. Takamiya, Localization of light-induced strontium accumulation in spinach chloroplasts, Plant Cell Physiol. 7, 263–275 (1966).Google Scholar
  35. 35.
    L. D. Peachey, Electron microscopic observations on the accumulation of divalent cations in intramitochondrial granules, J. Cell Biol. 20, 95–109 (1964).CrossRefGoogle Scholar
  36. 36.
    G. P. Brierley and D. B. Slautterback, Studies on ion transport. IV, An electron microscope study of the accumulation of Ca2+ and inorganic phosphate by heart mitochondria, Biochim. Biophys. Acta 82, 183–186 (1964).CrossRefGoogle Scholar
  37. 37.
    A. P. Somlyo et. al., Electron microscopy and electron probe analysis of mitochondrial cation accumulation of smooth muscle, J. Cell Biol. 61, 723–742 (1974).CrossRefGoogle Scholar
  38. 38.
    J. W. Greenawalt, C. S. Rossi, and A. L. Lehninger, Effect of active accumulation of calcium and phosphate ions on the structure of rat liver mitochondria, J. Cell Biol. 23, 21–38 (1964).CrossRefGoogle Scholar
  39. 39.
    T. T. Ostwald, D. H. MacLennan, and K. J. Dorrington, Effects of cation binding on the conformation of calsequestrin and the high affinity-binding protein of sarcoplasmic reticulum, J. Biol. Chem. 249, 5867–5871 (1974).Google Scholar
  40. 40.
    S. Dryl and A. Grebecki, Progress in the study of excitation and response in ciliates, Protoplasma 62, 257–284.Google Scholar
  41. 41.
    Y. Naitoh and R. Eckert, Electrophysiology of the ciliate protozoa, in: Experiments in Physiology and Biochemistry (G. A. Kerkut, ed.), pp. 17–31, Academic Press, London (1972).Google Scholar
  42. 42.
    R. Eckert, Bioelectric control of ciliary activity, Science 176, 473–481 (1972).CrossRefGoogle Scholar
  43. 43.
    R. Eckert and Y. Naitoh, Bioelectric control of locomotion in the ciliates, J. Protozool. 19, 237–243 (1972).Google Scholar
  44. 44.
    Y. Naitoh and R. Eckert, The control of ciliary activity in protozoa, in: Cilia and Flagella (M. Sleigh, ed.), pp. 305–352, Academic Press, New York (1974).Google Scholar
  45. 45.
    S. Dryl, Behavior and motor response of Paramecium, in: Paramecium, A Current Survey (W. J. Van Wagtendonk, ed.), pp. 165–210, Elsevier, New York, (1974).Google Scholar
  46. 46.
    R. Eckert and H. Machemer, Regulation of ciliary beating frequency by the surface membrane, in: Molecules and Cell Movement (S. Inoué and R. E. Stephens, eds.), pp. 151–163, Raven Press, New York (1975).Google Scholar
  47. 47.
    R. Eckert, Y. Naitoh, and H. Machemer, Calcium in the bioelectric and motor functions of Paramecium, Symp. Soc. Exp. Biol. 30, 233–256 (1976).Google Scholar
  48. 48.
    H. S. Jennings, Studies on reactions to stimuli in unicellular organisms. II. The mechanisms of the motor reactions of Paramecium, Am. J. Physiol. 2, 311–341 (1899).Google Scholar
  49. 49.
    Y. Naitoh and R. Eckert, Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation, Science 164, 963–965 (1969).CrossRefGoogle Scholar
  50. 50.
    R. Eckert, Y. Naitoh, and K. Friedman, Sensory mechanisms in Paramecium. I. Two components of the electric response to mechanical stimulation of the anterior surface, J. Exp. Biol. 56, 683–694.Google Scholar
  51. 51.
    T. L. Jahn, The mechanism of ciliary movement. I. Ciliary reversal and activation by electric current; the Ludloff phenomenon in terms of core and volume conductors, J. Protozool. 8, 369–380 (1961).Google Scholar
  52. 52.
    R. Eckert and Y. Naitoh, Passive electrical properties of Paramecium and problems of ciliary coordination, J. Gen. Physiol. 55, 467–483 (1970).CrossRefGoogle Scholar
  53. 53.
    T. Kamada, Polar effect of electrical current on the ciliary movements of Paramecium, Tokyo Univ. Fac. Sci. J. 2, 285–288 (1931).Google Scholar
  54. 54.
    T. Kamada, Some observations on potential differences across the ectoplasm membrane of Paramecium, J. Exp. Biol. 11, 94–102 (1934).Google Scholar
  55. 55.
    T. Kamada, Ciliary reversal of Paramecium, Proc. Imp. Acad. Tokyo 16, 241–247 (1940).Google Scholar
  56. 56.
    H. Kinosita, S. Dryl and Y. Naitoh, Spontaneous change in membrane potential of Paramecium caudatum induced by barium and calcium ions, Bull. Acad. Pol. Sci. 12, 459–461 (1964).Google Scholar
  57. 57.
    Y. Naitoh and R. Eckert, Electrical properties of Paramecium caudatum: Modification by bound and free cations, Z. Vergl. Physiol. 61, 427–462 (1968).CrossRefGoogle Scholar
  58. 58.
    M. J. Doughty and G. H. Dodd, Fluorimetric determination of the resting potential changes associated with the chemotactic response in Paramecium, Biochim. Biophys. Acta 451, 592–603 (1976).CrossRefGoogle Scholar
  59. 59.
    Y. Naitoh, R. Eckert and K. Friedman, A regenerative calcium response in Paramecium, J. Exp. Biol. 56, 667–681 (1972).Google Scholar
  60. 60.
    C. Kung and R. Eckert, Genetic modification of electric properties in an excitable membrane, Proc. Natl. Acad. Sci. USA 69, 93–97 (1972).CrossRefGoogle Scholar
  61. 61.
    H. Machemer and R. Eckert, Electrophysiological control of reversed ciliary beating in Paramecium, J. Gen. Physiol. 61, 572–587 (1973).CrossRefGoogle Scholar
  62. 62.
    S.-Y. Chang and C. Kung, Temperature-sensitive pawns: Conditional behavioral mutants of Paramecium aurelia, Science 180, 1197–1199 (1973).Google Scholar
  63. 63.
    S.-Y. Chang and C. Kung, Genetic analyses of heat-sensitive pawn mutants of Paramecium aurelia, Genetics 75, 49–59 (1973).Google Scholar
  64. 64.
    H. Machemer and R. Eckert, Cilia frequency and orientational responses to clamped voltage steps in Paramecium, J. Comp. Physiol. 104, 247–260 (1975).CrossRefGoogle Scholar
  65. 65.
    H. Machemer, Modification of ciliary activity by the rate of membrane potential changes in Paramecium, J. Comp. Physiol. 101,343–356 (1975).CrossRefGoogle Scholar
  66. 66.
    H. Machemer, Interactions of membrane potential and cations in regulation of ciliary activity in Paramecium, J. Exp. Biol. 65, 427–448 (1976).Google Scholar
  67. 67.
    Y. Satow and C. Kung, Mutants with reduced Ca activation in Paramecium aurelia, J. Membrane Biol. 28, 277–294 (1976).CrossRefGoogle Scholar
  68. 68.
    S. J. Schein, Nonbehavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability, Genetics 84, 453–468 (1976).Google Scholar
  69. 69.
    S. J. Schein, Calcium channel stability measured by gradual loss of excitability in pawn mutants of Paramecium aurelia, J. Exp. Biol. 65, 725–736 (1976).Google Scholar
  70. 70.
    S. J. Schein, M. V. L. Bennett and G. M. Katz, Altered Ca conductance in pawns, behavioral mutants of Paramecium aurelia, J. Exp. Biol. 65, 699–724 (1976).Google Scholar
  71. 71.
    J. L. Browning and D. L. Nelson, Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca2+fluxes across resting and excited membrane, Biochim. Biophys. Acta 448, 338–351 (1976).CrossRefGoogle Scholar
  72. 72.
    D. Oertel, S. J. Schein and C. Kung, Separation of membrane currents using a Paramecium mutant, Nature (London) 268, 120–124 (1977).CrossRefGoogle Scholar
  73. 73.
    K. Dunlap, Calcium channels in Paramecium confined to ciliary membrane, Am. Zool. 16, 185 (1976).Google Scholar
  74. 74.
    K. Dunlap and R. Eckert, Calcium channels in the ciliary membrane of Paramecium, J. Cell Biol. 70, 245a (1976).Google Scholar
  75. 75.
    A. Ogura and K. Takahashi, Artificial deciliation causes loss of calcium-dependent responses in Paramecium, Nature (London) 264, 170–172 (1976).CrossRefGoogle Scholar
  76. 76.
    Y. Naitoh, Reversal response elicited in nonbeating cilia of Paramecium by membrane depolarization, Science 154, 660–662 (1966).CrossRefGoogle Scholar
  77. 77.
    Y. Naitoh, Control of the orientation of cilia by adenosinetriphosphate, calcium and zinc in glycerol-extracted Paramecium caudatum, J. Gen. Physiol. 53, 517–529 (1969).CrossRefGoogle Scholar
  78. 78.
    Y. Naitoh and H. Kaneko, Reactivated triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions, Science 176, 523–524 (1972).CrossRefGoogle Scholar
  79. 79.
    Y. Naitoh and H. Kaneko, Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum, J. Exp. Biol. 58, 657–676 (1973).Google Scholar
  80. 80.
    C. Kung and Y. Naitoh, Calcium-induced ciliary reversal in the extracted models of “pawn,” a behavioral mutant of Paramecium, Science 179, 195–196 (1973).CrossRefGoogle Scholar
  81. 81.
    K. Friedman and R. Eckert, Ionic and pharmacological modification of input resistance and excitability in Paramecium, Comp. Biochem. Physiol. A 45, 101–114 (1973).CrossRefGoogle Scholar
  82. 82.
    Y. Satow and C. Kung, A “TEA+-sensitive” mutant with increased potassium conductance in Paramecium aurelia, J. Exp. Biol. 65, 51–63 (1976).Google Scholar
  83. 83.
    Y. Naitoh and R. Eckert, Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential, J. Exp. Biol. 59, 53–65 (1973).Google Scholar
  84. 84.
    C. Kung, Genic mutants with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioral mutants, Z. Vergl. Physiol.71:142–164 (1971).CrossRefGoogle Scholar
  85. 85.
    C. Kung, Genic mutants with altered system in excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants, Genetics 69, 29–45 (1971).Google Scholar
  86. 86.
    S.-Y. Chang et al., An extensive behavioral and genetic analysis of the pawn mutants in Paramecium aurelia, Genet. Res., Camb. 23, 165–173 (1974).CrossRefGoogle Scholar
  87. 87.
    C. Kung, Genetic dissection of the excitable membrane of Paramecium, Genetics 79, 423–431 (1975).Google Scholar
  88. 88.
    Y. Satow and C. Kung, Genetic dissection of active electrogenesis in Paramecium aurelia, Nature (London) 247, 69–71 (1973).CrossRefGoogle Scholar
  89. 89.
    Y. Satow, S.-Y. Chang, and C. Kung, Membrane excitability: Made temperature dependent by mutations, Proc. Natl. Acad. Sci. USA 71, 2703–2706 (1974).CrossRefGoogle Scholar
  90. 90.
    C. Kung et al., Genetic dissection of behavior in Paramecium, Science 188, 898–904 (1975).Google Scholar
  91. 91.
    Y. Satow, H. Hansma, and C. Kung, The effect of sodium on “paranoiac”—A membrane mutant of Paramecium, Comp. Biochem. Physiol. A 54, 323–329 (1976).CrossRefGoogle Scholar
  92. 92.
    J. L. Browning and D. L. Nelson, Amphipathic amines affect membrane excitability in Paramecium: Role for bilayer couple, Proc. Natl. Acad. Sci. USA 73, 452–456 (1976).CrossRefGoogle Scholar
  93. 93.
    J. L. Browning, D. L. Nelson, and G. G. Hansma, Ca2+ influx across the excitable membrane of behavioral mutants of Paramecium, Nature (London) 259, 491–494 (1976).CrossRefGoogle Scholar
  94. 94.
    J. D. Berger, Gene expression and phenotypic change in Paramecium tetraurelia exconjugants, Genet. Res. Camb. 27, 123–134 (1976).CrossRefGoogle Scholar
  95. 95.
    H. Hansma and C. Kung, Studies of the cell surface of Paramecium, Biochem. J. 152, 523–528 (1975).Google Scholar
  96. 96.
    J. F. Oliphant, Reversal of ciliary action in Paramecium induced by chemicals, Physiol. Zool. 15, 443–452 (1942).Google Scholar
  97. 97.
    H. Kinosita, S. Dryl, and Y. Naitoh, Changes in the membrance potential and the responses to stimuli in Paramecium, J. Fac. Sci. Univ. Tokyo, Sec. IV, 10, 291–301 (1964).Google Scholar
  98. 98.
    H. Kinosita, S. Dryl, and Y. Naitoh, Relation between the magnitude of membrane potential and ciliary activity in Paramecium, J. Fac. Sci. Univ. Tokyo, Sec. IV, 10, 303–309 (1964).Google Scholar
  99. 99.
    H. Kinosita, A. Murakami, and M. Yasuda, Interval between membrane potential change and ciliary reversal in Paramecium immersed in Ba-Ca mixture, J. Fac. Sci. Univ. Tokyo, Sec. IV, 10, 421–425 (1965).Google Scholar
  100. 100.
    L. Kuinicki, Role of Ca2+ions in the excitability of protozoan cell. Calcium factor in the ciliary reversal induced by inorganic cations in Paramecium caudatum, Acta Protozool. 4, 241–256 (1966).Google Scholar
  101. 101.
    Y. Naitoh and R. Eckert, Electrical properties of Paramecium caudatum: All-or-none electrogenesis, Z. Vergl. Physiol. 61, 453–472 (1968).CrossRefGoogle Scholar
  102. 102.
    D. R. Pitelka, New observations on cortical ultrastructure in Paramecium, J. Microscopie 4, 373–394 (1965).Google Scholar
  103. 103.
    P. Satir, Studies on cilia. III. Further studies on the cilium tip and a “sliding filament” model of ciliary motility, J. Cell Biol. 39, 77–94 (1968).CrossRefGoogle Scholar
  104. 104.
    R. D. Allen, Reinvestigation of cross sections of cilia, J. Cell Biol. 37, 825–831 (1968).CrossRefGoogle Scholar
  105. 105.
    R. D. Allen, The morphogenesis of basal bodies and accessory structures of the cortex of the ciliated protozoan Tetrahymena pyriformis, J. Cell Biol. 40, 716–733 (1969).CrossRefGoogle Scholar
  106. 106.
    L. A. Hufnagel, Cortical ultrastructure of Paramecium aurelia, J. Cell Biol. 40, 779–801 (1969).CrossRefGoogle Scholar
  107. 107.
    J. Wolfe, Structural analysis of basal bodies of the isolated oral apparatus of Tetrahymena pyriformis, J. Cell Sci. 6, 679–700 (1970).Google Scholar
  108. 108.
    J. Wolfe, Basal body fine structure and chemistry, Adv. Cell Mol. Biol. 2, 151–192 (1972).Google Scholar
  109. 109.
    F. D. Warner, The fine structure of the ciliary and flagellar axoneme, in: Cilia and Flagella (M. A. Sleigh, ed.), pp. 11–37, Academic Press, New York (1974).Google Scholar
  110. 110.
    D. R. Pitelka, Basal bodies and root structures, in: Cilia and Flagella (M. A. Sleigh, ed.), pp. 437–469, Academic Press, New York (1974).Google Scholar
  111. 111.
    C. A. Sattler and L. A. Staehelin, Ciliary membrane differentiations in Tetrahymena pyriformis. Tetrahymena has four types of cilia, J. Cell Biol. 62, 473–490 (1974).CrossRefGoogle Scholar
  112. 112.
    F. D. Warner and P. Satir, The structural basis of ciliary bend formation, J. Cell Biol. 63, 35–63 (1974).CrossRefGoogle Scholar
  113. 113.
    F. D. Warner, Cross-bridge mechanisms in ciliary motility: The sliding-bending conversion, in: Cell Motility Book C (R. Goldman, T. Pollard and J. Rosenbaum, eds.), pp. 891–914, Cold Spring Harbor, New York (1976).Google Scholar
  114. 114.
    I. R. Gibbons, Chemical dissection of cilia, Arch. Biol. (Liège) 76, 317–352 (1965).Google Scholar
  115. 115.
    K. E. Summers and I. R. Gibbons, Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea urchin sperm, Proc. Natl. Acad. Sci. USA 68, 3092–3096 (1971).CrossRefGoogle Scholar
  116. 116.
    I. R. Gibbons, The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc, J. Biophys. Biochem. Cytol. 11, 179–205 (1961).CrossRefGoogle Scholar
  117. 117.
    S. L. Tamm and G. A. Horridge, The relation between the orientation of the central fibrils and the direction of beat in cilia of Opalina, Proc. Roy. Soc. London B 175, 219–233 (1970).CrossRefGoogle Scholar
  118. 118.
    P. Satir, Ionophore-mediated calcium entry induces mussel gill ciliary arrest, Science 190, 586–587 (1975).CrossRefGoogle Scholar
  119. 119.
    P. Satir, Structural changes accompanying ciliary arrest, J. Cell Biol. 70, 230a (1976).Google Scholar
  120. 120.
    H. Plattner, F. Miller, and L. Bachmann, Membrane specializations in the form of regular membrane-to-membrane attachment sites in Paramecium. A correlated freeze-etching and ultrathin-sectioning analysis, J. Cell Sci. 13,687–719 (1973).Google Scholar
  121. 121.
    L. C. Baugh, P. Satir, and B. Satir, A ciliary membrane Ca++ATPase: A correlation of structure and function, J. Cell Biol. 70, 66a (1976).Google Scholar
  122. 122.
    B. Satir, C. Schooley, and P. Satir, The ciliary necklace in Tetrahymena, Acta Protozool. 11, 291–293 (1972).Google Scholar
  123. 123.
    B. Satir, W. S. Sale, and P. Satir, Membrane renewal after dibucaine deciliation of Tetrahymena. Freeze-fracture technique, cilia, membrane structure, Exp. Cell Res. 97, 83–91 (1976).CrossRefGoogle Scholar
  124. 124.
    J. Beisson et al., Genetic analysis of membrane differentiation in Paramecium. Freeze-fracture study of the trichocyst cycle in wild-type and mutant strains, J. Cell Biol. 69, 126–143 (1976).CrossRefGoogle Scholar
  125. 125.
    F. Wunderlich and V. Speth, Membranes in Tetrahymena. I. The cortical pattern J. Ultrastruct. Res. 41, 258–269 (1972).CrossRefGoogle Scholar
  126. 126.
    V. Speth and F. Wunderlich, Evidence for different dispositions of particles associated with freeze-etched membranes, Protoplasma 75, 341–344 (1972).CrossRefGoogle Scholar
  127. 127.
    N. B. Gilula and P. Satir, The ciliary necklace. A ciliary membrane specialization, J. Cell Biol. 53, 494–509 (1972).CrossRefGoogle Scholar
  128. 128.
    J. R. Kennedy and E. Brittingham, Fine structure changes during chloral hydrate deciliation of Paramecium caudatum, J. Ultrastruct. Res. 22, 530–545 (1968).CrossRefGoogle Scholar
  129. 129.
    J. R. Kennedy and A. M. Zimmerman, The effects of high hydrostatic pressure on the microtubules of Tetrahymena pyriformis, J. Cell Biol. 47, 568–576 (1971).CrossRefGoogle Scholar
  130. 130.
    R. V. Dippell, Effects of nuclease and protease digestion on the ultrastructure of Paramecium basal bodies, J. Cell Biol 69, 622–637 (1976).CrossRefGoogle Scholar
  131. 131.
    R. C. Weisenberg, Microtubule formation in vitro in solutions containing low calcium concentrations, Science 177, 1104–1105 (1972).CrossRefGoogle Scholar
  132. 132.
    A. Grebęcki and L. Kuznicki, Immobilization of Paramecium caudatum in the chloral hydrate solutions, Bull. Acad. Pol. Sci. Ser. Sci. Biol. 9, 459–462 (1961).Google Scholar
  133. 133.
    L. Kuznicki, Recovery in Paramecium caudatum immobilized by chloral hydrate treatment, Acta Protozool. 1, 177–185 (1963).Google Scholar
  134. 134.
    G. A. Thompson, L. C. Baugh and L. F. Walker, Nonlethal deciliation of Tetrahymena by a local anesthetic and its utility as a tool for studying cilia regeneration, J. Cell Biol. 61, 253–257 (1974).CrossRefGoogle Scholar
  135. 135.
    C. F. Ehret and E. W. McArdle, The structure of Paramecium as viewed from its constituent levels of organization, in: Paramecium. A Current Survey (W. J. Van Wagtendonk ed.), pp. 263–338, Elsevier Sci. Publ. Co., New York (1974).Google Scholar
  136. 136.
    R. G. W. Anderson and C. E. Hein, Distribution of anionic sites on the oviduct ciliary membrane, J. Cell Biol. 72, 482–492 (1977).CrossRefGoogle Scholar
  137. 137.
    R. D. Allen, Fine structure, reconstruction and possible functions of components of the cortex of Tetrahymena pyriformis, J. Protozool. 14, 553–565 (1967).Google Scholar
  138. 138.
    R. D. Allen, Fine structure of membranous and microfibrillar systems in the cortex of Paramecium caudatum, J. Cell Biol. 49, 1–20 (1971).CrossRefGoogle Scholar
  139. 139.
    A. Yusa, An electron microscope study on regeneration of trichocysts in Paramecium caudatum, J. Protozool. 10, 253–262 (1963).Google Scholar
  140. 140.
    C. Ehret and G. DeHaller, Origin, development and maturation of organelle systems of the cell surface in Paramecium, J. Ultrastruct. Res., 6 (Suppl.), 3–42 (1963).Google Scholar
  141. 141.
    G. G. Selman and A. Jurand, Trichocyst development during the fission cycle of Paramecium, J. Gen. Microbiol. 60, 365–372 (1970).Google Scholar
  142. 142.
    L. H. Bannister, The structure of trichocysts in Paramecium caudatum,J. CellSci. 11, 899–929 (1972).Google Scholar
  143. 143.
    K. E. Wohlfarth-Bottermann, Experimentelle und electronenoptische Untersuchungen zur Funktion der Trichocysten von Paramecium caudatum, Arch. Protistendk. 98, 169–226 (1953).Google Scholar
  144. 144.
    K. Hausmann and R. D. Allen, Membrane behavior of exocytotic vesicles. II. Fate of the trichocyst membranes in Paramecium after induced trichocyst discharge, J. Cell Biol. 69, 313–326 (1976).CrossRefGoogle Scholar
  145. 145.
    E. Steers, Jr., J. Beisson, and V. T. Marchesi, A structural protein extracted from the trichocyst of Paramecium aurelia, Exp. Cell Res. 57, 392–396 (1969).CrossRefGoogle Scholar
  146. 146.
    E. Carafoli, et al., (eds.), Calcium Transport in Contraction and Secretion, North Holland Publ. Co., Amsterdam (1975).Google Scholar
  147. 147.
    J. C. Foreman, L. G. Garland, and J. L. Mongar, The role of calcium in secretory processes: Model studies in mast cells, Symp. Soc. Exp. Biol 30, 193–218 (1976).Google Scholar
  148. 148.
    H. Plattner, Intramembranous changes on cationophore-triggered exocytosis in Paramecium, Nature (London) 252, 722–724 (1974).CrossRefGoogle Scholar
  149. 149.
    H. Plattner, K. Reichel, and H. Matt, Bivalent-cation-stimulated ATPase activity at preformed exocytosis sites in Paramecium coincides with membrane-intercalated particle aggregates, Nature (London) 267, 702–704 (1977).CrossRefGoogle Scholar
  150. 150.
    H. Plattner et al., Tracer and freeze-etching analysis of intra-cellular membrane junction in Paramecium with a note on a new heme-nonapeptide tracer, Histochemistry 45, 1–21 (1975).CrossRefGoogle Scholar
  151. 151.
    R. D. Allen and K. Hausmann, Membrane behavior of exocytotic vesicles. I. The ultrastructure of Paramecium trichocysts in freeze-fracture preparations, J. Ultrastruct. Res. 54:224–236 (1976).CrossRefGoogle Scholar
  152. 152.
    B. Satir, Membrane events during the secretory process, Soc. Exp. Biol. 28, 399–418 (1974).Google Scholar
  153. 153.
    B. Satir, Ultrastructural aspects of membrane fusion, J. Supramolec. Struct. 2, 529–537 (1974).CrossRefGoogle Scholar
  154. 154.
    B. Satir, The final steps in secretion, Sci. Am. 233, 28–37 (1975).CrossRefGoogle Scholar
  155. 155.
    H. Plattner, Membrane disruption, fusion and resealing in the course of exocytosis in Paramecium cells, Exp. Cell Res. 103, 431–435 (1976).CrossRefGoogle Scholar
  156. 156.
    R. Janisch, Pellicle of Paramecium caudatum as revealed by freeze-etching, J. Protozool 19, 470–472 (1972).Google Scholar
  157. 157.
    B. Satir, C. Schooley, and P. Satir, Membrane fusion in a model system. Mucocyst secretion in Tetrahymena, J. Cell Biol. 56, 153–176 (1973).CrossRefGoogle Scholar
  158. 158.
    L. A. Davidson, Ultrastructure of the membrane attachment sites of the extrusomes of Ciliophrys marina and Heterophrys marina (Actinopoda), Cell Tiss. Res. 170, 353–365 (1976).CrossRefGoogle Scholar
  159. 159.
    C. F. Bardele, Particle movement in heliozoan axopods associated with lateral displacement of highly ordered membrane domains, Z. Naturforsch. 31c, 190–194 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Edna S. Kaneshiro
    • 1
  • Gregory W. Fisher
    • 1
  1. 1.Department of Biological SciencesUniversity of CincinnatiCincinnatiUSA

Personalised recommendations