Advertisement

Uptake of Stable Strontium by Plants and Effects on Plant Growth

  • K. Isermann

Abstract

In contrast to the numerous publications on uptake of radioactive strontium (85Sr, 89Sr, and 90Sr) and its effects on plant growth resulting from irradiation by strontium or its radioactive daughter nuclides (e.g., Y-90), only a few articles exist on the uptake of stable Sr2+ and its possible effects on plant growth. Nevertheless there are two reasons why uptake of stable Sr2+ and its effects on plant growth are of great importance. First, from the viewpoint of plant physiology and plant nutrition it is interesting to know both the uptake and the effects of stable Sr2+ in relationship to the chemically related Ca2+. Similar study has already been carried out with other corresponding groups of ions (Li+ and Ca2+, Rb+ and K+, Br- and Cl-, or SO 4 2- and SeO 4 2- , PO 4 3- and ArO 4 3- ). With respect to the uptake and translocation of stable Sr2+ by the plant (but not with regard to its effects on plant growth), studies with radioactive strontium isotopes are very helpful. Second, from the ecological viewpoint, it is worthwhile to obtain information on regional and species differences in plant uptake and effects of stable Sr2+ on growth.

Keywords

Nutrient Solution Wheat Seedling Maize Root Anabaena Cylindrica Stable Strontium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. L. Comar, Some over-all aspects of strontium-calcium discrimination, in: The Transfer of Calcium and Strontium Across Biological Membranes (R. H. Wassermann, ed.), Academic Press, New York (1963).Google Scholar
  2. 2.
    H. J. M. Bowen and J. A. Dyamond, Strontium and barium in plants and soils, Proc. Roy. Soc. (London), B., 144, 355–368 (1955).CrossRefGoogle Scholar
  3. 3.
    R. G. Menzel and W. R. Heald, Strontium and calcium contents of crop plants in relation to exchangeable strontium and calcium of the soil, Soil Sci. Soc. Am. Proc. 23, 110–112 (1959).CrossRefGoogle Scholar
  4. 4.
    E. J. Hamilton and M. J. Minski, Abundance of the chemical elements in man’s diet and possible relations with environmental factors, Sci. Total Environment 1, 375–394 (1972).Google Scholar
  5. 5.
    R. L. Mitchell, The trace element content of plants, Research 10, 357–362 (1957).Google Scholar
  6. 6.
    V. L. Ananyan and G. A. Sarkisyan, Uptake of radioactive strontium, calcium, and potassium by some types and groups of herbaceous plants of Armenia, Biol. Zh. Arm. 29, 77–82 (1976).Google Scholar
  7. 7.
    A. Sh. Avetisyan, Effect of predecessor and varietal characteristics on the accumulation of radioactive strontium in plants, Biol. Zh. Arm. 30, 58–62 (1977).Google Scholar
  8. 8.
    I. L. Ophel and C. D. Fraser, Calcium and strontium discrimination by aquatic plants, Ecology 51,324–327 (1970).CrossRefGoogle Scholar
  9. 9.
    W. H. Fuller and E. Hardcastle, Relative absorption of strontium and calcium by certain algae, Soil Sci. Soc. Am. Proc. 31, 772–774 (1967).CrossRefGoogle Scholar
  10. 10.
    S. Oliver and S. A. Barber, Mechanisms for the movement of Mn, Fe, B, Cu, Zn, Al, and Sr from one soil to the surface of soybean roots, Soil Sci. Soc. Am. Proc. 30, 468–470 (1966).CrossRefGoogle Scholar
  11. 11.
    E. H. Halstead, S. A. Barber, D. D. Warncke, and J. B. Bole, Supply of Ca, Sr, Mn, and Zn to plant roots growing in soil, Soil Sei. Soc. Am. Proc. 32, 69–72 (1968).CrossRefGoogle Scholar
  12. 12.
    J. L. Brewster and P. B. Tinker, Nutrient cation flows in soil around plant roots, Soil Sci. Soc. Am. Proc. 34, 421–426 (1970).CrossRefGoogle Scholar
  13. 13.
    S. M. Elgawhary, G. L. Malzer, and S. A. Barber, Calcium and strontium transport to plant roots, Soil Sei. Soc. Am. Proc. 36, 749–799 (1972).Google Scholar
  14. 14.
    R. S. Russell and H. M. Squire, The absorption and distribution of strontium in plants, J. Expt. Bot. 9, 262–272 (1958).CrossRefGoogle Scholar
  15. 15.
    R. Handley and R. Overstreet, Uptake of strontium by roots of zea mays, Plant Physiol. 38, 180–184 (1963).CrossRefGoogle Scholar
  16. 16.
    E. M. Hutchin and B. E. Vaughan, Relation between calcium and strontium transport rates as determined simultaneously in isolated segments of the primary root of zea mays, Plant Physiol. 42, 644–650 (1967).CrossRefGoogle Scholar
  17. 17.
    A. Lauchli, Ionentransport durch Wurzeln intakter Keimpflanzen von Zea mays L., Ber. Schweiz. Bot. Ges. 75, 5–19 (1966).Google Scholar
  18. 18.
    F. H. Emmert, Retention and passage of calcium and strontium in stems of Phaseolus vulgaris as mediated by xylem stream flow rate and dinitrophenol, Physiol. Plant. 22, 246–252 (1969).CrossRefGoogle Scholar
  19. 19.
    L. E. Craker and L. H. Smith, Mechanisms of strontium accumulation in tissues of wheat spikes, Crop. Sci. 9, 564–567 (1969).CrossRefGoogle Scholar
  20. 20.
    L. H. Pinkas and L. H. Smith, Physiological basis of differential strontium accumulation in barley genotypes, Plant Physiol. 41, 1471–1475 (1966).CrossRefGoogle Scholar
  21. 21.
    O. Biddulph, F. S. Nakayama, and R. Cory, Transpiration stream and ascension of calcium, Plant Physiol. 36, 429–436 (1961).CrossRefGoogle Scholar
  22. 22.
    A. Lauchli, Nachweis von Ca/Sr-Ablagerungen im Fruchtstiel von Pisum sativum mit der Röntgen-Mikrosonde, Planta 73, 221–227 (1967).CrossRefGoogle Scholar
  23. 23.
    A. Lauchli, Untersuchungen über Verteilung und Transport von Ionen in Pflanzengeweben mit der Röntgenmikrosonde. I. Versuche an vegetativen Organen von Zea mays, Planta 75, 185–206 (1967).CrossRefGoogle Scholar
  24. 24.
    G. Schilling, Der Einfluß von Alterungsprozessen auf die Verteilung von Calcium und Strontium im Erbsenblatt, Biol. Z. Blatt 1, 33–36 (1961).Google Scholar
  25. 25.
    J. H. Rediske and A. A. Seiders, The absorption and translocation of strontium by plants, Plant Physiol. 28, 594–605 (1953).CrossRefGoogle Scholar
  26. 26.
    M. J. Bukovac and S. H. Wittwer, Absorption and mobility of foliar-applied nutrients, Plant Physiol. 32, 428–435 (1957).CrossRefGoogle Scholar
  27. 27.
    L. J. Middleton, Absorption and translocation of strontium and caesium by plants from foliar sprays, Nature (London) 181, 1300–1303 (1958).CrossRefGoogle Scholar
  28. 28.
    O. Biddulph, S. Biddulph, and R. Cory, Translocation of calcium in the bean plant, Plant Physiol. 34, 512–516 (1959).CrossRefGoogle Scholar
  29. 29.
    C. R. Creger and W. S. Allen, Strontium mobility in germinating seeds and plants, Plant Physiol. 44, 439–441 (1969).CrossRefGoogle Scholar
  30. 30.
    H. B. Tukey, H. B. Tukey Jr., and S. H. Wittwer, Loss of nutrients by foliar leaching as determined by radioisotopes, Proc. Am. Soc. Hort. Sci. 71, 496–506 (1958).Google Scholar
  31. 31.
    H. B. Tukey Jr. and R. A. Mecklenburg, Leaching of metabolites from foliage and subsequent reabsorption and redistribution of the leachate in plants, Am. J. Bot. 51, 737–742 (1964).CrossRefGoogle Scholar
  32. 32.
    R. A. Mecklenburg and H. B. Tukey, Jr., Uptake by the root and subsequent distribution within the potato plant of strontium-89 leached from the foliage, Nature (London) 198, 562–563 (1963).CrossRefGoogle Scholar
  33. 33.
    W. A. Jackson and D. C. Williams, Nitrate-stimulated uptake and transport of strontium and other cations, Soil Sci. Soc. Am. Proc. 32, 698–704 (1968).CrossRefGoogle Scholar
  34. 34.
    W. A. Jackson, D. C. Williams, and P. L. Minotti, Some consequences of nitrogen nutrition on uptake and transport of strontium and cesium, Soil Sci. 106, 381–392 (1968).CrossRefGoogle Scholar
  35. 35.
    A. J. Anderson, Influence of phosphorus and nitrogen nutrition on uptake and distribution of strontium and calcium in oat plants, Soil Sci. Soc. Am. Proc. 35, 108–111 (1971).CrossRefGoogle Scholar
  36. 36.
    A. J. Andersen and W. A. Jackson, Influence of nitrogen supply on uptake and translocation of strontium and calcium in wheat seedlings, Physiol. Plant. 26, 175–181 (1972).CrossRefGoogle Scholar
  37. 37.
    R. A. Shirshova, Sr90 and Cs137 entry into plants and agrochemical measures aimed to reduce their accumulation in crop yield, Agrochimica XVI, 233–241 (1972).Google Scholar
  38. 38.
    R. Handley and K. L. Babcock, Uptake and translocation of Sr by Zea mays, Radiat. Bot. 13, 273–281 (1973).CrossRefGoogle Scholar
  39. 39.
    E. Epstein and J. E. Legget, The absorption of alkaline earth cations by barley roots: Kinetics and mechanisms. Am. J. Bot. 41, 785–791 (1954).CrossRefGoogle Scholar
  40. 40.
    E. M. Romney, G. V. Alexander, H. Nishita, and K. H. Larson, Influence of Ca and Sr amendments on Sr90 uptake by Ladino clover upon prolonged cropping, Proc. Soil. Sci. Soc. Am. 25, 299–301 (1961).CrossRefGoogle Scholar
  41. 41.
    K. Steenberg and G. Semb, Experiments on plant uptake of radiostrontium from contaminated soils. Effect of liming. Meld. Norges Landbrukshogsk. 43, 12 (1964).Google Scholar
  42. 42.
    J. Günther and D. Schroeder, Über den Einfluß von Bodeneigenschaften auf die Aufnahme von radioaktivem Strontium durch Pflanzen. II. Untersuchungen an Modellböden mit systematisch variierten Merkmalen, Z. Pflanzenern., Düngung, Bodenk. 120, 78–89 (1968).CrossRefGoogle Scholar
  43. 43.
    E. Lakanen and A. Paasikallia, The effects of soil factors on the uptake of radiostrontium by plants. Arm. Agric. Fenn. 7, 89–94 (1968).Google Scholar
  44. 44.
    F. E. Khasawneh, A. S. R. Juo, and S. A. Barber, Soil properties influencing differential Ca to Sr adsorption, Soil Sei. Soc. Am. Proc. 32, 209–211 (1968).CrossRefGoogle Scholar
  45. 45.
    R. Guennelon, A. Conesa, and A. M. deCockborne, Relations entre les proprietés des sol et l’absorption du strontium par une culture de ray-grass en sols calcaires, Ann. Agron. 23, 497–515 (1977).Google Scholar
  46. 46.
    V. G. Sal’nikov, F. I. Pavlotskaya, and I. Moiseev, Bonding of Sr90 with the components of soil organic matter as affected by lime and peat and the relationship with accumulation of this isotope by plants, Pochvovedenie 5, 87–94 (1976).Google Scholar
  47. 47.
    S. M. Elgawhary and S. A. Barber, Measurement of uptake of chelated and unchelated Ca and Sr from solution culture, Plant Soil 39, 581–590 (1973).CrossRefGoogle Scholar
  48. 48.
    S. M. Elgawhary and S. A. Barber, Root uptake coefficients for absorption of Ca EDTA and Ca2+ by tomato plants, Plant Soil 40, 183–191 (1974).CrossRefGoogle Scholar
  49. 49.
    G. L. Malzer and S. A. Barber, Calcium and strontium absorption by corn roots in the presence of chelates, Soil Sei. Soc. Am. J. 40, 727–731 (1976).CrossRefGoogle Scholar
  50. 50.
    K. Isermann and A. Glatzle, Discrimination of calcium against strontium in plants with a cryptating agent, Naturwissenschaften 5, 238 (1975).CrossRefGoogle Scholar
  51. 51.
    K. Isermann and A. Glatzle, Einfluß von Makrobicyclus “Kryptofix 222” auf die Calcium-und Strontium-Aufnahme von Buschbohnen-keimpflanzen, Z. Pflanz. Bodenk. 2, 253–263 (1976).CrossRefGoogle Scholar
  52. 52.
    K. A. Smith, The comparative uptake and translocation by plants of calcium, strontium, barium, and radium. Bertholletia excelsa (Brazil nut tree), Plant Soil 34, 369–379 (1971).CrossRefGoogle Scholar
  53. 53.
    P. Frei, Die Aufnahme von Strontium durch Zea mays L. in Mischkultur mit Bodenpilzen, Ber. Schweiz. Bot. Ges. 73, 21–57 (1963).Google Scholar
  54. 54.
    P. J. Kramer, Roots as absorbing organs, in: Handbuch der Pflanzenphysiologie (ed. W. Ruhland), p. 195, Springer-Verlag, Berlin, Göttingen, Heidelberg (1956).Google Scholar
  55. 55.
    A. Aarkrog, J. Lippert, and J. Petersen, Environmental radioactivity in Denmark, 1961, Riso Report No. 41. Danish Atomic Energy Commission Research Establishment, Risö.Google Scholar
  56. 56.
    J. Mauchline and W. L. Templeton, Strontium, calcium and barium in marine organisms from the Irish Sea, J. Cons. Perm. Int. Explor. Mer. 30, 161–170 (1966).Google Scholar
  57. 57.
    S. C. Skoryna, T. M. Paul, and D. Woldron-Edward, Studies of inhibition of intestional absorption of radioactive strontium by alginic acid derivatives, Can. Med. Assoc. J., 91, 285–288 (1964).Google Scholar
  58. 58.
    H. J. M. Bowen and J. A. Dymond, The uptake of Ca and Sr by plants from soils and nutrient solutions, J. Exp. Bot. 7, 264–272 (1956).CrossRefGoogle Scholar
  59. 59.
    R. G. Menzel, Competetive uptake of K, Rb, Cs and Ca, Sr, Ba from soils, Soil Sci. 77, 419–425 (1954).CrossRefGoogle Scholar
  60. 60.
    R. G. Menzel and W. R. Heald, Distribution of potassium, rubidium, cesium, calcium and strontium within plants grown in nutrient solutions, Soil Sci. 80, 287–293 (1955).CrossRefGoogle Scholar
  61. 61.
    C. Myttenaere, Influence du rapport strontium-calcium sur la croissance et l’absorption du strontium et du calcium chez Pisum sativum L., Ann. Physiol. Vég. Univ. Brux. 8, 47–60 (1963).Google Scholar
  62. 62.
    C. Myttenaere, The influence of the strontium/calcium ratio of the nutrient solution on the translocation and chemical forms of strontium and calcium in Pisum sativum, Radiat. Bot. 5, 143–151 (1965).CrossRefGoogle Scholar
  63. 63.
    R. P. Martin, P. Newbould, and R. Russel, Discrimination between strontium and calcium in plants and soils, Proc. 1st UNESCO Int. Conf. “Radioisotopes in Scientific Research, 41, 173–190 (1958).Google Scholar
  64. 64.
    G. Michael, Über das Wahlvermögen der Pflanzen bei der Mineralstoffaufnahme. Deutsche Akademie d. Land Wirtschaftswissenschaften, Berlin VIII, 4, 3–32 (1959).Google Scholar
  65. 65.
    G. Schilling, Strontium in der höheren Pflanze. II. Verteilung und Bindungszustand in der Pflanze, Z. Pflanz. Düngg. Bodenk. 91, 212–224 (1960).CrossRefGoogle Scholar
  66. 66.
    K. A. Smith, The comparative uptake and translocation by plants of calcium, strontium, barium and radium. II. Triticum vulgare (wheat), Plant Soil. 34, 643–651 (1971).CrossRefGoogle Scholar
  67. 67.
    L. H. Smith, D. C. Rasmusson, and W. M. Myers, Influence of genotype upon relationship of strontium-89 to calcium in grain of barley and wheat, Crop Sci. 3, 386–389 (1963).CrossRefGoogle Scholar
  68. 68.
    C. Myttenaere, Influence du rapport strontium—calcium sur la localisation du strontium et du calcium chez Pisum sativum, Physiol Plant. 17, 814–827 (1964).CrossRefGoogle Scholar
  69. 69.
    J. B. Walker, Inorganic micronutrient requirements of Chlorella. I. Requirements for Ca or Sr, Cu and Mo, Arch. Biochem. Biophys. 46, 1–11 (1953).CrossRefGoogle Scholar
  70. 70.
    S. W. Moss, J. P. Thomas, and J. C. O’Kelley, Strontium substitution for calcium and algae cell size, Physiol. Plant. 25, 184–187 (1971).CrossRefGoogle Scholar
  71. 71.
    T. E. Denton, M. Meshad, J. W. Haladay, and J. C. O’Kelley, Ca and Sr influence on carbohydrate synthesis and composition in Protosiphon, Plant Cell Physiol. 10, 711–714 (1969).Google Scholar
  72. 72.
    J. C. O’Kelley and W. R. Herndon, Alkaline earth elements and zoospore release and development in Protosiphon botryoides, Am. J. Bot. 48, 796–802 (1961).CrossRefGoogle Scholar
  73. 73.
    J. C. O’Kelley and W. R. Herndon, Effect of strontium replacement for calcium on production of motile cells in Protosiphon, Science 130, 718 (1959).CrossRefGoogle Scholar
  74. 74.
    M. B. Allen and D. I. Arnon, Studies of nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation by Anabaena cylindrica Lemm, Plant Physiol. 30, 366–372 (1955).CrossRefGoogle Scholar
  75. 75.
    E. Haselhoff, Versuche über den Ersatz des Kalkes durch Strontium bei der Pflanzenernährung, Landw. Jahrb. 22, 851–861 (1893).Google Scholar
  76. 76.
    J. S. McHargue, Effect of certain compounds of barium and strontium on the growth of plants, J. Agric. Res. 16, 183–194 (1919).Google Scholar
  77. 77.
    T. Walsh, The effect on plant growth of substituting strontium for calcium in acid soils, Proc. Irish Acad. 50, 287–294 (1945).Google Scholar
  78. 78.
    A. M. Hurd-Karrer, Antagonism of certain elements essential to plants toward chemically related toxic elements, Plant Physiol. 14, 9–29 (1939).CrossRefGoogle Scholar
  79. 79.
    G. Michael and G. Schilling, Strontium in der höheren Pflanze I. Die Aufnahme des Strontiums durch Erbsen und Hafer und seine Wirkung auf das Pflanzenwachstum, Z. Pflanz. Düngg. Bodenk. 91, 147–158 (1960).CrossRefGoogle Scholar
  80. 80.
    W. H. Queen, H. W. Fleming, and J. C. O. O’Kelley, Effects of zea mays seedlings of a strontium replacement for calcium in nutrient media, Plant Physiol. 38, 410–413 (1963).CrossRefGoogle Scholar
  81. 81.
    E. Bonds and J. C. O. O’Kelly, Effects of Ca and Sr on zea mays seedling primary root growth. Am. J. Bot. 56, 271–274 (1969).CrossRefGoogle Scholar
  82. 82.
    B. K. Tripathi, Action du Strontium et du Baryum sur la neoformation de racines par les tissus de rhizomes de Tompinambour cultives in vitro, C. R. Acad. Sci. Paris 271, 1869–1871 (1970).Google Scholar
  83. 83.
    G. V. Il’ina, S. G. Rydkij, and F. G. Janovskaja, Postuplenje stabil-nogo stroncija v rastenija v zavisimosti ot nekotrych élementov pitanija, Agrochimija 2, 83–91 (1966).Google Scholar
  84. 84.
    V. Kovacs and A. Szabo, Strontium and cesium content of plants and factors related to the absorption of strontium and cesium. II. Absorption of strontium and cesium in plants, Bot. Bozl. 63, 149–153 (1976).Google Scholar
  85. 85.
    M. Saric and B. Krstic, The reaction of some plant species to the substitution of strontium for calcium and potassium in a nutritious solution, Acta Bot. Croat. 35, 97–111 (1976).Google Scholar
  86. 86.
    B. Wolf and S. J. Cesare, Response of field-grown peaches to strontium sprays, Science 115, 606–607 (1952).CrossRefGoogle Scholar
  87. 87.
    E. P. Bazegskij, Vlijanie molibdena i stroncija na urozay sel’skochzjajsst vennych kul’tur, Rostov na-Donu 1, 81–83 (1962).Google Scholar
  88. 88.
    E. P. Bazegskij, Vlijanie stroncija na urožai nekotorych see’skochzjajst vennych kul’tur, Serija Biolo. Agron. 1, 159–167 (1965).Google Scholar
  89. 89.
    R. Bamford, Changes in root tips of wheat and corn grown in nutrient solutions deficient in Ca, Bull. Torrey Bot. Club 58, 149–179 (1931).CrossRefGoogle Scholar
  90. 90.
    R. Handley, A. Metwally, and R. Overstreet, Divalent cations and the permeability of Na of the root meristem of zea mays, Plant Soil 22, 200–206 (1965).CrossRefGoogle Scholar
  91. 91.
    R. B. H. Wills, K. J. Scott, and E. T. Carroll, Use of alkaline earth metals to reduce the incidence of storage disorders of apples, Aust. J. Agric. Res. 26, 169–171 (1975).CrossRefGoogle Scholar
  92. 92.
    B. A. Humphrey and J. M. Vincent, Strontium as a substituted structural element in cell walls of Rhizobium, Nature (London) 212, 212–213 (1966).CrossRefGoogle Scholar
  93. 93.
    E. Epstein, The essential role of calcium in selective cation transport by plant cells, Plant Physiol. 36, 437–444 (1961).CrossRefGoogle Scholar
  94. 94.
    L. Jacobson, R. Hannapel, D. P. Moore, and M. Schaedel, Influence of calcium on selectivity of ion absorption processes, Plant Physiol. 36, 58–61 (1961).CrossRefGoogle Scholar
  95. 95.
    F. M. Chaudhry and J. F. Loneragan, Zinc absorption by wheat seedlings and the nature of its inhibition by alkaline earth cations, J. Exp. Bot. 23, 552–560 (1972).CrossRefGoogle Scholar
  96. 96.
    F. M. Chaudhry and J. F. Loneragan, Zinc absorption by wheat seedlings. I. Inhibition by macronutrient ions in short-term experiments and its significance to long-term zinc nutrition, Soil Sci. Soc. Am. Proc. 36, 323–327 (1972).CrossRefGoogle Scholar
  97. 97.
    C. W. Bell, and O. Biddulph, Translocation of calcium. Exchange versus mass flow, Plant Physiol. 38, 610–614 (1963).CrossRefGoogle Scholar
  98. 98.
    I. B. Ferguson and E. G. Bollard, The movement of calcium in woody stems, Ann. Bot. 40, 1057–1065 (1976).Google Scholar
  99. 99.
    R. E. Johnson and W. A. Jackson, Effect of calcium and strontium on the preferential formation of an adenosine triphosphatase in wheat roots, Nature (London) 210, 869–870 (1966).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • K. Isermann
    • 1
  1. 1.Institute of Plant NutritionUniversity of HohenheimStuttgartGermany

Personalised recommendations