Skeletogenesis in Scleractinian Corals: The Transport and Deposition of Strontium and Calcium

  • Bruce E. Chalker


The scleractinians or stony corals are an order of coelenterates that form aragonitic calcium carbonate skeletons. They are functionally divided into two groups: the hermatypic (reef-building) and the ahermatypic (nonreef-building) corals. The vast majority of the hermatypic corals are found in shallow, tropical oceans, where their skeletons frequently form vast coral reefs. These tropical hermatypes characteristically contain within their cells large populations of the endosymbiotic dinoflagellate Gymnodinium microadriaticum.


Scleractinian Coral Coral Skeleton Hermatypic Coral Symbiotic Alga Magnesian Calcite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. Borle, Calcium metabolism at the cellular level, Fed. Proc. 32, 1944–1950 (1973).Google Scholar
  2. 2.
    K. Simkiss, Calcium translocation by cells, Endeavour 33, 119–123 (1974).CrossRefGoogle Scholar
  3. 3.
    S. Kawaguti and D. Sakumoto, The effect of light on the calcium deposition of corals, Bull. Oceanogr. Inst. Taiwan 4, 65–70 (1948).Google Scholar
  4. 4.
    T. F. Goreau, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull. Mar. Biol. Lab. Woods Hole 116, 59–75 (1959).CrossRefGoogle Scholar
  5. 5.
    T. F. Goreau and N. I. Goreau, The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef, Biol. Bull. Mar. Biol. Lab. Woods Hole 117, 239–250 (1959).CrossRefGoogle Scholar
  6. 6.
    J. H. Vandermeulen, N. Davis, and L. Muscatine, The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates, Mar. Biol. 16, 185–191 (1972).Google Scholar
  7. 7.
    L. Muscatine, Calcification in corals, in: Experimental Coelenterate Biology (H. Lenhoff, L. Muscatine, and L. V. Davis, eds.), pp. 179–191, University of Hawaii Press, Honolulu (1971).Google Scholar
  8. 8.
    J. H. Vandermeulen and L. Muscatine, Influence of symbiotic algae on calcification in reef corals: Critique and progress report, in: Symbiosis in the Sea (W. B. Vernberg, ed.), pp. 1–20, University of South Carolina Press, Columbia (1974).Google Scholar
  9. 9.
    T. F. Goreau, Problems of growth and calcium deposition in reef corals, Endeavour 20, 32–39 (1961).CrossRefGoogle Scholar
  10. 10.
    T. F. Goreau, On the relation of calcification to primary productivity in reef building organisms, in: The Biology of Hydra and Some Other Coelenterates (H. M. Lenhoff and W. F. Loomis, eds.), pp. 269–285, University of Miami Press, Coral Gables, Fla. (1961).Google Scholar
  11. 11.
    C.M. Yonge, The biology of reef-building corals, Sci. Rep. Great Barrier Reef Exp. 1928–1929, Br. Mus. (Nat. Hist.) 1, 353–391 (1940).Google Scholar
  12. 12.
    C. M. Yonge, Living corals, Proc. Roy. Soc. (London) B 169, 329–344 (1968).CrossRefGoogle Scholar
  13. 13.
    C. M. Yonge and A. G. Nicholls, Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae, Sci. Rept. Great Barrier Reef Exp. 1928–1929, Br. mus. (Nat. Hist.) 1, 135–176 (1931).Google Scholar
  14. 14.
    C. M. Yonge and A. G. Nicholls, Studies on the physiology of corals. V. The effects of starvation, in the light and in darkness, on the relationship between corals and zooxanthellae, Sci. Rept. Great Barrier Reef Exp. 1928–1929, Br. Mus. (Nat. Hist.) 1, 177–211 (1931).Google Scholar
  15. 15.
    K. Simkiss, Phosphates as crystal poisons, Biol. Rev. 39, 487–505 (1964).CrossRefGoogle Scholar
  16. 16.
    K. Simkiss, The inhibitory effects on some metabolites on the precipitation of calcium carbonate from artificial sea water and natural sea water, J. Cons. Cons. Perm. Int. Explor. Mer 29, 6–28 (1964).Google Scholar
  17. 17.
    K. Simkiss, Possible effects of zooxanthellae on coral growth, Experientia 20, 140–144 (1964).CrossRefGoogle Scholar
  18. 18.
    J. W. Campbell and K. V. Speeg, Theoretical considerations of the possible role of ammonia in the biological deposition of calcium carbonate, Am. Zool. 8, 770–776 (1968).Google Scholar
  19. 19.
    J. W. Campbell and K. V. Speeg, Ammonia and biological deposition of calcium carbonate, Nature (London) 224, 725–726 (1969).CrossRefGoogle Scholar
  20. 20.
    P. W. Hochachka and G. N. Somero, Strategies of Biochemical Adaptation, 358 pp. W. B. Saunders, Philadelphia (1973).Google Scholar
  21. 21.
    C. J. Crossland and D. J. Barnes, The role of metabolic nitrogen in coral calcification, Mar. Biol. 28, 325–332 (1974).CrossRefGoogle Scholar
  22. 22.
    C. J. Crossland and D. J. Barnes, Further evidence for the role of metabolic nitrogen in coral calcification, In: Abstracts of Symposia and Contributed Papers, 56th annual meeting of the Western Society of Naturalists, San Francisco, California, p. 28 (1975).Google Scholar
  23. 23.
    J. H. Vandermeulen, Studies on skeleton formation, tissue ultrastructure, and physiology of calcification in the reef coral Pocillopora damicornis Lamarck (Ph. D. dissertation), University of California, Berkeley (1972).Google Scholar
  24. 24.
    V. B. Pearse and L. Muscatine, Role of symbiotic algae (zooxanthellae) in coral calcification, Biol. Bull. Mar. Biol. Lab., Woods Hole 141, 350–363 (1971).CrossRefGoogle Scholar
  25. 25.
    L. Muscatine, Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host, Science 156, 516–519 (1967).CrossRefGoogle Scholar
  26. 26.
    L. Muscatine and E. Cernichiari, Assimilation of photosynthetic products of zooxanthellae by a reef coral, Biol. Bull. Mar. Biol. Lab., Woods Hole 137, 506–523 (1969).CrossRefGoogle Scholar
  27. 27.
    L. Muscatine, R. R. Pool, and E. Cernichiari, Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals, Mar. Biol. 13, 298–308 (1972).CrossRefGoogle Scholar
  28. 28.
    D. H. Lewis and D. C. Smith, The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts, Proc. Roy. Soc. London B 178, 111–129 (1971).CrossRefGoogle Scholar
  29. 29.
    D. Smith, L. Muscatine, and D. Lewis, Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis, Biol. Rev. 44, 17–90 (1969).CrossRefGoogle Scholar
  30. 30.
    S. A. Wainwright, Skeletal organization of the coral Pocillopora damicornis, Q. J. Microscop. Sci. 104, 169–183 (1963).Google Scholar
  31. 31.
    S.D. Young, Studies on the skeletal organic material in hermatypic corals with emphasis on Pocillopora damicornis (Ph.D. dissertation), University of California, Berkeley (1969).Google Scholar
  32. 32.
    S. D. Young, Organic material from scleractinian coral skeletons. I. Variation in composition between several species, Comp. Biochem. Physiol5 40, 113–120 (1971).CrossRefGoogle Scholar
  33. 33.
    S. D. Young, J. D. O’Connor, and L. Muscatine, Organic material from scleractinian coral skeletons. II. Incorporation of 14C into protein, chitin and lipid, Comp. Biochem. Physiol. 540, 945–958 (1971).Google Scholar
  34. 34.
    A. A. Benson and L. Muscatine, Wax in coral mucus: Energy transfer from corals to reef fishes, Limnol. Oceanogr. 19, 810–814 (1974).CrossRefGoogle Scholar
  35. 35.
    D. J. Barnes, A study of growth, structure, and form in modern coral skeletons (Ph.D. dissertation), University of New Castle-Upon-Tyne (1971).Google Scholar
  36. 36.
    D. J. Barnes, Coral skeletons: An explanation of their growth and structure, Science 170, 1305–1308 (1971).CrossRefGoogle Scholar
  37. 37.
    S. D. Young, Calcification and synthesis of skeletal organic material in the coral, Pocillopora damicornis (L.) (Astrococoeniidae, Schleractinia), Comp. Biochem. Physiol. A 44, 669–672 (1973).CrossRefGoogle Scholar
  38. 38.
    E. T. Degens, Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell, Topics Curr. Chem. 64, 1–112 (1976).CrossRefGoogle Scholar
  39. 39.
    K. M. Towe, Invertebrate shell structure and the organic matrix concept, Biomin. Res. Rep. 4, 1–14 (1972).Google Scholar
  40. 40.
    T. F. Goreau and V. Brown, Calcium uptake by a coral, Science 122, 1188–1189 (1955).CrossRefGoogle Scholar
  41. 41.
    G. Chapman, The skeletal system, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenoff, eds.), pp. 93–128, Academic Press, New York (1974).Google Scholar
  42. 42.
    B. E. Chalker and D. L. Taylor, Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis, Proc. Roy. Soc. London B 190, 323–331 (1975).CrossRefGoogle Scholar
  43. 43.
    B. E. Chalker, Calcification, metabolism, and growth by the staghorn coral, Acropora cervicornis (Lamarck) (Ph.D. dissertation), University of Miami, Coral Gables, Fla. (1975).Google Scholar
  44. 44.
    B. E. Chalker, Calcium transport during skeletogenesis in hermatypic corals, Comp. Biochem. Physiol. A 54, 455–459 (1976).CrossRefGoogle Scholar
  45. 45.
    K. M. Plowman, Enzyme Kinetics p. 171, St. Martin’s Press, New York (1972).Google Scholar
  46. 46.
    T. F. Goreau and N. I. Goreau, The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead reef-building corals, Biol. Bull. Mar. Biol. Lab. Woods Hole 119, 416–427 (1960).CrossRefGoogle Scholar
  47. 47.
    J. D. Milliman, Recent Sedimentary Carbonates. Part 1. Marine Carbonates, Springer-Verlag, Berlin (1974).CrossRefGoogle Scholar
  48. 48.
    K. E. Chave, Aspects of the biochemistry of magnesium, J. Geol. 62, 266–283 (1954).CrossRefGoogle Scholar
  49. 49.
    J. R. Goldsmith, D. L. Graf, and O. I. Joensuu, The occurrence of magnesian calcites in nature, Geochim. Cosmochim. Acta 7, 212–230 (1955).CrossRefGoogle Scholar
  50. 50.
    F. Lippman, Minerals, Rocks and Inorganic Materials, in Monograph Series of Theoretical and Experimental Studies, Vol. 6. Sedimentary Carbonate Minerals, Springer-Verlag, Berlin (1973).Google Scholar
  51. 51.
    H. Steinfink and F. J. Sans, Refinement of the crystal structure of dolomite, Am. Mineral. 44, 679–682 (1959).Google Scholar
  52. 52.
    J. P. R. DeVilliers, Crystal structures of aragonite, strontionite, and witherite, Am. Mineral. 56, 758–767 (1971).Google Scholar
  53. 53.
    A. Dal Negro and L. Ungaretti, Refinement of the crystal structure of aragonite, Am. Mineral. 56, 768–772 (1971).Google Scholar
  54. 54.
    J. R. Dodd, Magnesium and strontium in calcareous skeletons. A review, J. Paloegr. 41, 1313–1329 (1967).Google Scholar
  55. 55.
    D. J. J. Kinsman, Interpretation of Sr2+ concentrations in carbonate minerals and rocks., J. Sed. Petrol. 39, 486–508 (1969).Google Scholar
  56. 56.
    T. G. Thompson and T. J. Chow, The strontium-calcium ration in carbonate secreting marine organisms, Deep Sea Res. (Suppl.) 3, 20–39 (1955).Google Scholar
  57. 57.
    H. T. Odum, Biochemical deposition of strontium, Publ. Inst. Mar. Sci. (Texas) 4, 38–114 (1957).Google Scholar
  58. 58.
    R. C. Harris and C. C. Almy, A preliminary investigation into the incorporation and distribution of minor elements in the skeletal material of scleractinian corals, Bull. Mar. Sci. 14, 418–423 (1964).Google Scholar
  59. 59.
    D. J. J. Kinsman and H. D. Holland, The coprecipitation of cations with CaCO3. IV. The coprecipitation of Sr2+ with aragonite between 16° and 96°C. Geochim. Cosmochim. Acta 33, 1–17 (1969).CrossRefGoogle Scholar
  60. 60.
    G. Thompson and H. D. Livingston, Strontium and uranium concentrations in aragonite precipitated by some modern corals, Earth Planet Sei. Lett. 8, 439–442 (1970).CrossRefGoogle Scholar
  61. 61.
    F. R. Siegel, The effect of strontium on the aragonite calcite ratios of Pleistocene corals, J. Sed. Petrol. 30, 297–304 (1960).Google Scholar
  62. 62.
    H. D. Livingston and G. Thompson, Trace element concentration in some modern corals, Umnol. Oceanogr. 16, 786–796 (1971).CrossRefGoogle Scholar
  63. 63.
    J. N. Weber, Incorporation of strontium into reef coral skeletal carbonate, Geochim. Cosmochim. Acta 37, 2173–2190 (1973).CrossRefGoogle Scholar
  64. 64.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959).Google Scholar
  65. 65.
    T. J. Goreau, Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis, Proc. Roy. Soc. London B 196, 291–315 (1977).CrossRefGoogle Scholar
  66. 66.
    T. F. Goreau, Seasonal variations of trace metals and stable isotopes in coral skeleton: physiological and environmental controls, Proc. Third Int. Coral Reef Symp. 1, 425–430 (1977).Google Scholar
  67. 67.
    J. N. Weber, Skeletal chemistry of scleractinian reef corals: uptake of magnesium from sea water, Am. J. Sci. 274, 84–93 (1974).CrossRefGoogle Scholar
  68. 68.
    J. H. Hudson, E. A. Shinn, R. B. Halley, and B. Lid, Sclerochronology: A tool for interpreting past environments, Geology 4, 361–364 (1976).CrossRefGoogle Scholar
  69. 69.
    J. E. Houck, R. W. Buddemeier, S. V. Smith, and P. L. Jokiel, The response of coral growth rate and skeletal strontium content to light intensity and water temperature, Proc. Third Int. Coral Reef Symp. 2, 426–431 (1977).Google Scholar
  70. 70.
    R. W. Buddemeier and R. A. Kinzie, III, Coral growth, Oceanogr. Mar. Biol. Annu. Rev. 14, 183–225 (1976).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Bruce E. Chalker
    • 1
  1. 1.Australian Institute of Marine ScienceTownsvilleAustralia

Personalised recommendations