Skip to main content

Skeletogenesis in Scleractinian Corals: The Transport and Deposition of Strontium and Calcium

  • Chapter
Handbook of Stable Strontium

Abstract

The scleractinians or stony corals are an order of coelenterates that form aragonitic calcium carbonate skeletons. They are functionally divided into two groups: the hermatypic (reef-building) and the ahermatypic (nonreef-building) corals. The vast majority of the hermatypic corals are found in shallow, tropical oceans, where their skeletons frequently form vast coral reefs. These tropical hermatypes characteristically contain within their cells large populations of the endosymbiotic dinoflagellate Gymnodinium microadriaticum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. B. Borle, Calcium metabolism at the cellular level, Fed. Proc. 32, 1944–1950 (1973).

    CAS  Google Scholar 

  2. K. Simkiss, Calcium translocation by cells, Endeavour 33, 119–123 (1974).

    Article  CAS  Google Scholar 

  3. S. Kawaguti and D. Sakumoto, The effect of light on the calcium deposition of corals, Bull. Oceanogr. Inst. Taiwan 4, 65–70 (1948).

    Google Scholar 

  4. T. F. Goreau, The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions, Biol. Bull. Mar. Biol. Lab. Woods Hole 116, 59–75 (1959).

    Article  CAS  Google Scholar 

  5. T. F. Goreau and N. I. Goreau, The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef, Biol. Bull. Mar. Biol. Lab. Woods Hole 117, 239–250 (1959).

    Article  CAS  Google Scholar 

  6. J. H. Vandermeulen, N. Davis, and L. Muscatine, The effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates, Mar. Biol. 16, 185–191 (1972).

    Google Scholar 

  7. L. Muscatine, Calcification in corals, in: Experimental Coelenterate Biology (H. Lenhoff, L. Muscatine, and L. V. Davis, eds.), pp. 179–191, University of Hawaii Press, Honolulu (1971).

    Google Scholar 

  8. J. H. Vandermeulen and L. Muscatine, Influence of symbiotic algae on calcification in reef corals: Critique and progress report, in: Symbiosis in the Sea (W. B. Vernberg, ed.), pp. 1–20, University of South Carolina Press, Columbia (1974).

    Google Scholar 

  9. T. F. Goreau, Problems of growth and calcium deposition in reef corals, Endeavour 20, 32–39 (1961).

    Article  Google Scholar 

  10. T. F. Goreau, On the relation of calcification to primary productivity in reef building organisms, in: The Biology of Hydra and Some Other Coelenterates (H. M. Lenhoff and W. F. Loomis, eds.), pp. 269–285, University of Miami Press, Coral Gables, Fla. (1961).

    Google Scholar 

  11. C.M. Yonge, The biology of reef-building corals, Sci. Rep. Great Barrier Reef Exp. 1928–1929, Br. Mus. (Nat. Hist.) 1, 353–391 (1940).

    Google Scholar 

  12. C. M. Yonge, Living corals, Proc. Roy. Soc. (London) B 169, 329–344 (1968).

    Article  Google Scholar 

  13. C. M. Yonge and A. G. Nicholls, Studies on the physiology of corals. IV. The structure, distribution and physiology of the zooxanthellae, Sci. Rept. Great Barrier Reef Exp. 1928–1929, Br. mus. (Nat. Hist.) 1, 135–176 (1931).

    Google Scholar 

  14. C. M. Yonge and A. G. Nicholls, Studies on the physiology of corals. V. The effects of starvation, in the light and in darkness, on the relationship between corals and zooxanthellae, Sci. Rept. Great Barrier Reef Exp. 1928–1929, Br. Mus. (Nat. Hist.) 1, 177–211 (1931).

    Google Scholar 

  15. K. Simkiss, Phosphates as crystal poisons, Biol. Rev. 39, 487–505 (1964).

    Article  CAS  Google Scholar 

  16. K. Simkiss, The inhibitory effects on some metabolites on the precipitation of calcium carbonate from artificial sea water and natural sea water, J. Cons. Cons. Perm. Int. Explor. Mer 29, 6–28 (1964).

    CAS  Google Scholar 

  17. K. Simkiss, Possible effects of zooxanthellae on coral growth, Experientia 20, 140–144 (1964).

    Article  Google Scholar 

  18. J. W. Campbell and K. V. Speeg, Theoretical considerations of the possible role of ammonia in the biological deposition of calcium carbonate, Am. Zool. 8, 770–776 (1968).

    Google Scholar 

  19. J. W. Campbell and K. V. Speeg, Ammonia and biological deposition of calcium carbonate, Nature (London) 224, 725–726 (1969).

    Article  CAS  Google Scholar 

  20. P. W. Hochachka and G. N. Somero, Strategies of Biochemical Adaptation, 358 pp. W. B. Saunders, Philadelphia (1973).

    Google Scholar 

  21. C. J. Crossland and D. J. Barnes, The role of metabolic nitrogen in coral calcification, Mar. Biol. 28, 325–332 (1974).

    Article  CAS  Google Scholar 

  22. C. J. Crossland and D. J. Barnes, Further evidence for the role of metabolic nitrogen in coral calcification, In: Abstracts of Symposia and Contributed Papers, 56th annual meeting of the Western Society of Naturalists, San Francisco, California, p. 28 (1975).

    Google Scholar 

  23. J. H. Vandermeulen, Studies on skeleton formation, tissue ultrastructure, and physiology of calcification in the reef coral Pocillopora damicornis Lamarck (Ph. D. dissertation), University of California, Berkeley (1972).

    Google Scholar 

  24. V. B. Pearse and L. Muscatine, Role of symbiotic algae (zooxanthellae) in coral calcification, Biol. Bull. Mar. Biol. Lab., Woods Hole 141, 350–363 (1971).

    Article  CAS  Google Scholar 

  25. L. Muscatine, Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host, Science 156, 516–519 (1967).

    Article  CAS  Google Scholar 

  26. L. Muscatine and E. Cernichiari, Assimilation of photosynthetic products of zooxanthellae by a reef coral, Biol. Bull. Mar. Biol. Lab., Woods Hole 137, 506–523 (1969).

    Article  CAS  Google Scholar 

  27. L. Muscatine, R. R. Pool, and E. Cernichiari, Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals, Mar. Biol. 13, 298–308 (1972).

    Article  CAS  Google Scholar 

  28. D. H. Lewis and D. C. Smith, The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I. Movement of photosynthetic products between the symbionts, Proc. Roy. Soc. London B 178, 111–129 (1971).

    Article  CAS  Google Scholar 

  29. D. Smith, L. Muscatine, and D. Lewis, Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis, Biol. Rev. 44, 17–90 (1969).

    Article  CAS  Google Scholar 

  30. S. A. Wainwright, Skeletal organization of the coral Pocillopora damicornis, Q. J. Microscop. Sci. 104, 169–183 (1963).

    Google Scholar 

  31. S.D. Young, Studies on the skeletal organic material in hermatypic corals with emphasis on Pocillopora damicornis (Ph.D. dissertation), University of California, Berkeley (1969).

    Google Scholar 

  32. S. D. Young, Organic material from scleractinian coral skeletons. I. Variation in composition between several species, Comp. Biochem. Physiol5 40, 113–120 (1971).

    Article  CAS  Google Scholar 

  33. S. D. Young, J. D. O’Connor, and L. Muscatine, Organic material from scleractinian coral skeletons. II. Incorporation of 14C into protein, chitin and lipid, Comp. Biochem. Physiol. 540, 945–958 (1971).

    Google Scholar 

  34. A. A. Benson and L. Muscatine, Wax in coral mucus: Energy transfer from corals to reef fishes, Limnol. Oceanogr. 19, 810–814 (1974).

    Article  Google Scholar 

  35. D. J. Barnes, A study of growth, structure, and form in modern coral skeletons (Ph.D. dissertation), University of New Castle-Upon-Tyne (1971).

    Google Scholar 

  36. D. J. Barnes, Coral skeletons: An explanation of their growth and structure, Science 170, 1305–1308 (1971).

    Article  Google Scholar 

  37. S. D. Young, Calcification and synthesis of skeletal organic material in the coral, Pocillopora damicornis (L.) (Astrococoeniidae, Schleractinia), Comp. Biochem. Physiol. A 44, 669–672 (1973).

    Article  CAS  Google Scholar 

  38. E. T. Degens, Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell, Topics Curr. Chem. 64, 1–112 (1976).

    Article  CAS  Google Scholar 

  39. K. M. Towe, Invertebrate shell structure and the organic matrix concept, Biomin. Res. Rep. 4, 1–14 (1972).

    Google Scholar 

  40. T. F. Goreau and V. Brown, Calcium uptake by a coral, Science 122, 1188–1189 (1955).

    Article  CAS  Google Scholar 

  41. G. Chapman, The skeletal system, in: Coelenterate Biology: Reviews and New Perspectives (L. Muscatine and H. M. Lenoff, eds.), pp. 93–128, Academic Press, New York (1974).

    Google Scholar 

  42. B. E. Chalker and D. L. Taylor, Light-enhanced calcification, and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis, Proc. Roy. Soc. London B 190, 323–331 (1975).

    Article  CAS  Google Scholar 

  43. B. E. Chalker, Calcification, metabolism, and growth by the staghorn coral, Acropora cervicornis (Lamarck) (Ph.D. dissertation), University of Miami, Coral Gables, Fla. (1975).

    Google Scholar 

  44. B. E. Chalker, Calcium transport during skeletogenesis in hermatypic corals, Comp. Biochem. Physiol. A 54, 455–459 (1976).

    Article  CAS  Google Scholar 

  45. K. M. Plowman, Enzyme Kinetics p. 171, St. Martin’s Press, New York (1972).

    Google Scholar 

  46. T. F. Goreau and N. I. Goreau, The physiology of skeleton formation in corals. IV. On isotopic equilibrium exchanges of calcium between corallum and environment in living and dead reef-building corals, Biol. Bull. Mar. Biol. Lab. Woods Hole 119, 416–427 (1960).

    Article  CAS  Google Scholar 

  47. J. D. Milliman, Recent Sedimentary Carbonates. Part 1. Marine Carbonates, Springer-Verlag, Berlin (1974).

    Book  Google Scholar 

  48. K. E. Chave, Aspects of the biochemistry of magnesium, J. Geol. 62, 266–283 (1954).

    Article  CAS  Google Scholar 

  49. J. R. Goldsmith, D. L. Graf, and O. I. Joensuu, The occurrence of magnesian calcites in nature, Geochim. Cosmochim. Acta 7, 212–230 (1955).

    Article  CAS  Google Scholar 

  50. F. Lippman, Minerals, Rocks and Inorganic Materials, in Monograph Series of Theoretical and Experimental Studies, Vol. 6. Sedimentary Carbonate Minerals, Springer-Verlag, Berlin (1973).

    Google Scholar 

  51. H. Steinfink and F. J. Sans, Refinement of the crystal structure of dolomite, Am. Mineral. 44, 679–682 (1959).

    CAS  Google Scholar 

  52. J. P. R. DeVilliers, Crystal structures of aragonite, strontionite, and witherite, Am. Mineral. 56, 758–767 (1971).

    CAS  Google Scholar 

  53. A. Dal Negro and L. Ungaretti, Refinement of the crystal structure of aragonite, Am. Mineral. 56, 768–772 (1971).

    CAS  Google Scholar 

  54. J. R. Dodd, Magnesium and strontium in calcareous skeletons. A review, J. Paloegr. 41, 1313–1329 (1967).

    CAS  Google Scholar 

  55. D. J. J. Kinsman, Interpretation of Sr2+ concentrations in carbonate minerals and rocks., J. Sed. Petrol. 39, 486–508 (1969).

    CAS  Google Scholar 

  56. T. G. Thompson and T. J. Chow, The strontium-calcium ration in carbonate secreting marine organisms, Deep Sea Res. (Suppl.) 3, 20–39 (1955).

    Google Scholar 

  57. H. T. Odum, Biochemical deposition of strontium, Publ. Inst. Mar. Sci. (Texas) 4, 38–114 (1957).

    CAS  Google Scholar 

  58. R. C. Harris and C. C. Almy, A preliminary investigation into the incorporation and distribution of minor elements in the skeletal material of scleractinian corals, Bull. Mar. Sci. 14, 418–423 (1964).

    Google Scholar 

  59. D. J. J. Kinsman and H. D. Holland, The coprecipitation of cations with CaCO3. IV. The coprecipitation of Sr2+ with aragonite between 16° and 96°C. Geochim. Cosmochim. Acta 33, 1–17 (1969).

    Article  CAS  Google Scholar 

  60. G. Thompson and H. D. Livingston, Strontium and uranium concentrations in aragonite precipitated by some modern corals, Earth Planet Sei. Lett. 8, 439–442 (1970).

    Article  CAS  Google Scholar 

  61. F. R. Siegel, The effect of strontium on the aragonite calcite ratios of Pleistocene corals, J. Sed. Petrol. 30, 297–304 (1960).

    CAS  Google Scholar 

  62. H. D. Livingston and G. Thompson, Trace element concentration in some modern corals, Umnol. Oceanogr. 16, 786–796 (1971).

    Article  CAS  Google Scholar 

  63. J. N. Weber, Incorporation of strontium into reef coral skeletal carbonate, Geochim. Cosmochim. Acta 37, 2173–2190 (1973).

    Article  CAS  Google Scholar 

  64. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959).

    Google Scholar 

  65. T. J. Goreau, Coral skeletal chemistry: physiological and environmental regulation of stable isotopes and trace metals in Montastrea annularis, Proc. Roy. Soc. London B 196, 291–315 (1977).

    Article  CAS  Google Scholar 

  66. T. F. Goreau, Seasonal variations of trace metals and stable isotopes in coral skeleton: physiological and environmental controls, Proc. Third Int. Coral Reef Symp. 1, 425–430 (1977).

    CAS  Google Scholar 

  67. J. N. Weber, Skeletal chemistry of scleractinian reef corals: uptake of magnesium from sea water, Am. J. Sci. 274, 84–93 (1974).

    Article  CAS  Google Scholar 

  68. J. H. Hudson, E. A. Shinn, R. B. Halley, and B. Lid, Sclerochronology: A tool for interpreting past environments, Geology 4, 361–364 (1976).

    Article  Google Scholar 

  69. J. E. Houck, R. W. Buddemeier, S. V. Smith, and P. L. Jokiel, The response of coral growth rate and skeletal strontium content to light intensity and water temperature, Proc. Third Int. Coral Reef Symp. 2, 426–431 (1977).

    Google Scholar 

  70. R. W. Buddemeier and R. A. Kinzie, III, Coral growth, Oceanogr. Mar. Biol. Annu. Rev. 14, 183–225 (1976).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

Chalker, B.E. (1981). Skeletogenesis in Scleractinian Corals: The Transport and Deposition of Strontium and Calcium. In: Skoryna, S.C. (eds) Handbook of Stable Strontium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3698-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3698-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3700-3

  • Online ISBN: 978-1-4684-3698-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics