Advertisement

Effects of Stable Strontium Supplementation

  • Stanley C. Skoryna
  • Martha Fuskova

Abstract

Gabriel Bertrand (1), who can be regarded as the father of trace element research, established a dictum presently known as Bertrand’s law: “Plants cannot live with a deficiency, while an excess is toxic” (2). Venchikov (3) extended this concept to animal species and proposed “zoning” of the effects of trace elements into areas of deficiency, physiological levels, pharmacological action, and toxicity. One of the objectives of this classification is to eliminate the existing confusion with regard to the observations made in various species, using different routes of administration, and with respect to the interactions among trace elements and between trace and bulk elements (4). The concept of zoning of biological activity appears to provide a useful framework for description of the effects of different levels of oral intake of trace elements on a particular system or function, although the present information on some of them, including stable Sr2+, is insufficient to delineate precisely the zones of activity; the zone limits will undoubtedly change when additional data become available. The standardization of reporting will certainly facilitate advancement of research in this area.

Keywords

Mitochondrial Membrane Alcoholic Hepatitis Exhaustive Exercise Mitochondrial Structure Metastatic Bone Lesion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Bertrand, Sur le role de infiniment petits elements en agriculture, C R Ville Congr. Int. Chim. Appl., New York, 28, 30–49 (1912).Google Scholar
  2. 2.
    E. J. Underwood, Trace Elements in Human and Animal Nutrition, 4th Ed., 545 pp., Academic Press, New York (1977).Google Scholar
  3. 3.
    A. I. Venchikov, Zones of display of biological and pharmacotoxicological action of trace elements, in: Trace Element Metabolism in Animals (W. G. Hoekstra et al., eds.), pp. 295–310, University Park Press, Baltimore (1974).Google Scholar
  4. 4.
    S. C. Skoryna, Y. Tanaka, Wellington Moore Jr., and J. F. Stara, Prevention of gastrointestinal absorption of excessive trace elements intake. Introductory lecture, in: Trace Substances in Environmental Health (D. D. Hemphill, ed.), pp. 3–11, University of Missouri (1973).Google Scholar
  5. 5.
    H. A. Schroeder, I. H. Tipton, and A. P. Nason, Trace metals in man: Strontium and barium, J. Chronic Dis. 25, 491–517 (1972).CrossRefGoogle Scholar
  6. 6.
    S. C. Skoryna and D. S. Kahn, Late effects of radioactive strontium on bone: Histogenesis of bone tumours produced by radioactive strontium, Cancer 12, 306–322 (1959).CrossRefGoogle Scholar
  7. 7.
    E. Shorr and, A. C. Carter, The value of strontium as an adjuvant to calcium in the mineralization of the skeleton in osteoporosis in man, in: Metabolic Interrelations (E. C. Reifenstein, ed.), pp. 144–154, Josiah Macy Jr. Foundation, New York (1950).Google Scholar
  8. 8.
    J. M. Janes and F. McCaslin, The effect of strontium lactate in the treatment of osteoporosis, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 563–579, Plenum, New York (1981).Google Scholar
  9. 9.
    S. C. Skoryna, T. M. Paul, and D. Waldron-Edward, Prevention of absorption of radioactive strontium from ligated intestinal segments by alginic acid, Can. Med. Ass. J. 91,285–288 (1964).Google Scholar
  10. 10.
    D. Waldron-Edward, T. M. Paul, and S. C. Skoryna, Suppression of intestinal absorption of radioactive strontium by naturally occurring non-absorbable polyelectrolytes, Nature (London) 205, 117–118(1965).CrossRefGoogle Scholar
  11. 11.
    S. C. Skoryna and Y. Tanaka, Biological activity of fractionation products of brown marine algae, in: Sixth Seaweed Symposium (R. Margalef, ed.), pp. 737–746, Marina Mercante Press (1968).Google Scholar
  12. 12.
    O. L. J. Van der Borght, S. Van Puymbroeck, and I. Babakova, Effect of combined alginate treatments on the distribution and excretion of an old radiostrontium contamination, Health Physics 35, 255–258 (1978).CrossRefGoogle Scholar
  13. 13.
    J. F. Stara and D. Waldron-Edward, Repressive action of sodium alginate on absorption of radioactive strontium and calcium in cats, in: Diagnosis and Treatment of Deposited Radionuclides (H. A. Kornberg and W. D. Norwood, eds.), pp. 340–354, Excerpta Medica Foundation, Amsterdam (1969).Google Scholar
  14. 14.
    R. Hesp and B. Ramsbottom, Studies on the inhibition of radiostrontium uptake from the human gastrointestinal tract with sodium alginate, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 313–321, Academic Press, New York (1967).Google Scholar
  15. 15.
    E. M. Scheithauerand S. C. Skoryna, Effects of changes in Sr2+ concentration on coelenterates, Proc. Can. Fed. Biol. Sci. 13, 158 (1970).Google Scholar
  16. 16.
    K. C. Hong, J. Hong, and S. C. Skoryna, unpublished observations (1977).Google Scholar
  17. 17.
    Perkin-Elmer Company, Manual for Clinical Methods for Atomic Absorption Spectrophotometry, Perkin-Elmer Publ., Norwalk, Conn. (1971).Google Scholar
  18. 18.
    C. de Duve, B. C. Pressman, R. Gianetto, R. Wattiaux, and F. Appelmans, Fractionation studies. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochemistry 60, 604–617(1955).Google Scholar
  19. 19.
    F. Rousselet, N. El Solh, J. P. Mauret, et al., Strontium et métabolisme calcique. Interaction strontium-Vitamine D. CR Seances Soc. Biol. 169, 322–329 (1975).Google Scholar
  20. 20.
    E. Storey, Strontium “rickets”: Bone calcium and strontium changes, Australasian Ann. Med. 10, 213–222(1961).Google Scholar
  21. 21.
    N. El Solh and F. Rousselet, Effects of stable strontium on calcium metabolism with reference to low-calcium diet, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 515–544, Plenum, New York (1981).Google Scholar
  22. 22.
    Squire’s Companion to the British Pharmacopeia, Nineteenth Edition, London (1916).Google Scholar
  23. 23.
    D. A. Mackenzie and J. M. Janes, Postmenopausal osteoporosis. A programme of treatment in 42 cases, Can. Med. Ass. J. 71, 330–340 (1954).Google Scholar
  24. 24.
    H. L. Rosenthal, Content of stable strontium in man and animal biota, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 503–514, Plenum, New York (1981).Google Scholar
  25. 25.
    G. E. Harrison, W. H. A. Raymond, and H. C. Tretheway, The metabolism of strontium in man, Clin. Sci. 14, 681–695 (1955).Google Scholar
  26. 26.
    J. M. Warren and H. Spencer, Metabolic balances of strontium in man, Clin. Orthop. 117, 307–320(1976).Google Scholar
  27. 27.
    R. C. Likins, H. G. McCann, A. S. Posner, and D. B. Scott, Comparative fixation of calcium and strontium by synthetic hydroxyapatite, J. Biol. Chem. 235, 2152–2156 (1960).Google Scholar
  28. 28.
    C. L. Wadkins and C. F. Peng, Interactions of strontium with mineralized tissue, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 545–561, Plenum, New York (1981).Google Scholar
  29. 29.
    E. Storey, Intermittent bone changes and multiple cartilage defects in chronic strontium rickets in rats, J. Bone Joint Surg. 443, 194–208 (1962).Google Scholar
  30. 30.
    H. T. Odum, The stability of the world strontium cycle, Science 114, 407–411 (1951).CrossRefGoogle Scholar
  31. 31.
    A. Gunatilaka, Biogeochemistry of strontium, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 000–000, Plenum, New York, (1981).Google Scholar
  32. 32.
    E. D. Eanes and A. S. Posner, Structure and chemistry of bone minerals, in: Biological Calcification—Cellular and Molecular Aspects (H. Schraer, ed.), pp. 1–26, Appleton-Century-Crofts, New York (1970).Google Scholar
  33. 33.
    D. F. Travis, The comparative ultrastructure and organization of five calcified tissues, in: Biological Calcification—Cellular and Molecular Aspects (H. Schraer, ed.), pp. 203–312, Appleton-Century-Crofts, New York (1970).Google Scholar
  34. 34.
    J. D. Termine, Mineral chemistry and skeletal biology, Clin. Orthop. 85, 207–241 (1972).CrossRefGoogle Scholar
  35. 35.
    C. L. Wadkins, R. Luben, M. Thomas, et al., Physical biochemistry of calcification, Clin. Orthop. 99, 246–266 (1974).CrossRefGoogle Scholar
  36. 36.
    J. L. Omdahl and H. F. De Luca, Strontium-induced rickets: Metabolic basis, Science 174, 949–951 (1971).CrossRefGoogle Scholar
  37. 37.
    S. G. Kshirsagar, Effect of dietary strontium on the calcium and phosphorus content of liver, intestine and kidney of the rat, Ind. J. Exp. Biol. 14, 424–427 (1976).Google Scholar
  38. 38.
    R. A. Corradino and R. H. Wasserman, Strontium inhibition of vitamin D3-induced calcium-binding protein (CaBP) and calcium absorption in chick intestine, Proc. Soc. Biol. Med. 133, 960–963 (1970).Google Scholar
  39. 39.
    C. W. Weber, A. R. Doberenz, R. W. G. Wyckoff, et al., Strontium metabolism in chicks, Poultry Science 47, 1318–1323 (1968).Google Scholar
  40. 40.
    C. L. Cornar and R. H. Wasserman, Strontium, in: Mineral Metabolism (C. L. Cornar and S. Bronner, eds.), Vol. 2, Chapter 23, pp. 523–572, Academic Press, New York (1962–63).Google Scholar
  41. 41.
    C. H. Göran-Bauer, A. Carlsson, and B. Lindquist, A comparative study on the metabolism of Sr90 and Ca45, Acta Physiol. Scand. 35, 56–66 (1955).CrossRefGoogle Scholar
  42. 42.
    A. Gormican, Inorganic elements in foods used in hospital menus, J. Am. Diet Ass. 56,397–403 (1970).Google Scholar
  43. 43.
    K. Isermann, Uptake of stable strontium and effects on plant growth, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 000–000, Plenum, New York (1981).Google Scholar
  44. 44.
    C. R. Creger and W. S. Allen, Strontium mobility in germinating seeds and plants, Plant Physiol. 44, 439–441 (1961), quoted in Ref. 43.CrossRefGoogle Scholar
  45. 45.
    H. F. De Luca and G. W. Engstrom, Calcium uptake by rat kidney mitochondria, Proc. Natl. Acad. Sci. U.S.A. 47, 1744–1750(1961).CrossRefGoogle Scholar
  46. 46.
    F. D. Vasington and J. V. Murphy, Ca2+ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation, J. Biol. Chem. 237, 2676–2677 (1962).Google Scholar
  47. 47.
    C. S. Rossi and A. L. Lehninger, Stoichiometry of respiratory stimulation accumulation of Ca++ and phosphate, and oxidative phosphorylation in rat liver mitochondria, J. Biol. Chem. 239, 3971–3980 (1964).Google Scholar
  48. 48.
    F. R. Mraz, Calcium and strontium uptake by rat liver and kidney mitochondria, Proc. Soc. Exp. Biol. Med. 11, 429–431 (1962).Google Scholar
  49. 49.
    J. B. Chappell, M. Cohn, and G. D. Grenville, The accumulation of divalent cations by isolated mitochondria, in: Energy-Linked Functions of Mitochondria (B. Chance, ed.), pp. 219–227, Academic Press, New York (1963).Google Scholar
  50. 50.
    B. Chance, The energy linked reaction of calcium with mitochondria, J. Biol. Chem. 240, 2729–2748(1965).Google Scholar
  51. 51.
    H. Rasmussen, Cell communication, calcium ion, and cyclic adenosine monophosphate, Science 170, 404–412(1970).CrossRefGoogle Scholar
  52. 52.
    B. A. Tashmukhamedov and A. I. Gagelgans, Interactions of strontium with animal mitochondria, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 213–237, Plenum, New York (1981).Google Scholar
  53. 53.
    A. L. Lehninger, Mitochondria and calcium ion transport, Biochem. J. 119, 129–138 (1970).Google Scholar
  54. 54.
    A. B. Borle, Calcium metabolism at the cellular level, Fed. Proc. 32, 1944–1950 (1973).Google Scholar
  55. 55.
    T. Spencer and F. L. Bygrave, The role of mitochondria in modifying the cellular ionic environment. Studies of the kinetic accumulation of calcium by rat liver mitochondria, J. Bioenergetics 4, 347–362 (1973).CrossRefGoogle Scholar
  56. 56.
    E. Carafoli, S. Weiland, and A. L. Lehninger, Active accumulation of Sr2+ by rat-liver mitochondria. I. General features, Biochim. Biophys. Acta 97, 88–98 (1965).CrossRefGoogle Scholar
  57. 57.
    E. Carafoli, Active accumulation of Sr2+ by rat-liver mitochondria. II. Competition between Ca2+ and Sr2+, Biochim. Biophys. Acta 97, 99–106 (1965).CrossRefGoogle Scholar
  58. 58.
    E. Carafoli, Active accumulation of Sr2+ by rat-liver mitochondria. III. Stimulation of respiration by Sr2+ and its stoichiometry, Biochim. Biophys. Acta 97, 107–117 (1965).CrossRefGoogle Scholar
  59. 59.
    A. I. Kaplan and E. Carafoli, The effect of Sr2+ on swelling and ATP linked contraction of mitochondria, Biochim. Biophys. Acta 104, 317–329 (1965).CrossRefGoogle Scholar
  60. 60.
    S. C. Skoryna, S. Inoue, and M. Fuskova, Intestinal absorption of strontium. X. Effects of dietary supplementation of stable strontium, Can. Med. Ass. J. 124, (1981).Google Scholar
  61. 61.
    P. B. Taylor, D. R. Lamb, and G. C. Budd, Structure and function of cardiac mitochondria in exhausted guinea pigs, Eur. J. App. Physiol. 35, 111–118 (1976).CrossRefGoogle Scholar
  62. 62.
    P. D. Gollnick and D. W. King, Effect of exercise and training on mitochondria of rat skeletal muscle, Am. J. Physiol. 216, 1502–1509 (1969).Google Scholar
  63. 63.
    D. W. King and P. D. Gollnick, Ultrastructure of rat heart and liver after exhaustive exercise, Am. J. Physiol. 218, 1150–1155 (1970).Google Scholar
  64. 64.
    J. Schaper, F. Hehrlein, M. Schlepper, and K. U. Thiedemann, Ultrastructural alterations during ischemia and perfusion in human hearts during cardiac surgery, J. Mol. Cell Cardiol. 9, 175–189(1977).CrossRefGoogle Scholar
  65. 65.
    K. I. Shine, A. M. Douglas, and N. N. Ricchiuti, Calcium, strontium and barium movements during ischemia and reperfusion in rabbit ventricle, Circ. Res. 43, 712–720 (1978).Google Scholar
  66. 66.
    V. Sahgal, V. Subramani, R. Hughes, A. Shah, and H. Singh, On the pathogenesis of mitochondrial myopathies, Acta Neuropathol. 46, 177–183 (1979).CrossRefGoogle Scholar
  67. 67.
    G. Chomette, J. Emerit, and M. Auriol, L’hépatocyte dans l’hépatite aigue alcoolique, Virch. Arch. (A), Path. Anat. Histol. 380, 31–48 (1978).Google Scholar
  68. 68.
    L. J. Anghileri, Cell membrane ionic permeability, calcium ion, mitochondria and carcinogenesis, Arch. Geschwulstf. 48, 497–503 (1978).Google Scholar
  69. 69.
    W. R. Loewenstein, Junctional intercellular communication and the control of growth, Biochim. Biophys. Acta 560, 1–65 (1979).Google Scholar
  70. 70.
    A. Horava and S. C. Skoryna, Observations on pathogenesis of neoplasia, Can. Med. Assoc. J. 73, 630–638 (1955).Google Scholar
  71. 71.
    S. C. Skoryna, Systemic factors in carcinogenesis, Can. Med. Assoc. J. 80, 689–697 (1959).Google Scholar
  72. 72.
    J. Neyman, Indeterminism in science and new demands on statisticians, J. Am. Statistical. Assoc. 55, 625–639 (1960).CrossRefGoogle Scholar
  73. 73.
    S. C. Skoryna, Stochastic processes in the causation of peptic ulcer, in: Pathophysiology of Peptic Ulcer (S. C. Skoryna, ed.), pp. 481–497, McGill University Press (1963).Google Scholar
  74. 74.
    O. Warburg, On the origin of cancer cell, Science 123, 309–314 (1956).CrossRefGoogle Scholar
  75. 75.
    J. M. Keynes, A Treatise on Probability, Macmillan, London (1921).Google Scholar
  76. 76.
    E. F. Korman, G. A. Glondin, W. J. Vail, and D. E. Green, The mechanism of mitochondrial swelling. VII. The constant topology of the mitochondrial inner membrane during swelling, Bioenergetics 1, 379–386(1970).CrossRefGoogle Scholar
  77. 77.
    K. Bogucka and L. Wojtczak, Binding of magnesium by proteins of the mitochondrial intermembrane compartment, Biochem. Biophys. Res. Comm. 71, 161–167 (1976).CrossRefGoogle Scholar
  78. 78.
    A. L. Lehninger, Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation, Physiol. REv. 42, 467–517 (1962).Google Scholar
  79. 79.
    G. P. Brierley, The uptake and extrusion of monovalent cations by isolated heart mitochondria, Mol. Cell Biochem. 10, 41–63 (1976).CrossRefGoogle Scholar
  80. 80.
    M. Waite, G. L. Scherphof, F. M. G. Boshouwers, and L. L. M. Van Deenen, Differentiation of phospholipases A in mitochondria and lysosomes of rat liver, J. Lipid Res. 10, 411–420 (1969).Google Scholar
  81. 81.
    D. Siliprandi, M. Rugolo, F. Zoccarato, A. Toninello, and N. Siliprandi, Involvement of endogenous phospholipase A2 in Ca2+ and Mg2+ movements induced by inorganic phosphate and diamide in rat liver mitochondria, Biochem. Biophys. Res. Comm. 88, 388–394 (1979).CrossRefGoogle Scholar
  82. 82.
    P. Mermier and W. Hasselbach, Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum, Eur. J. Biochem. 68, 79–86 (1976).CrossRefGoogle Scholar
  83. 83.
    E. Carafoli and M. Crompton, The regulation of intracellular calcium by mitochondria, in: Calcium Transport and Cell Function (A. Scarpa and E. Carafoli, eds.), Ann. N. Y. Acad. Sci., 307, 269–284(1978).Google Scholar
  84. 84.
    F. G. Knox, Physiology of calcium and phosphate regulation, Symposium of American Physiological Society, Physiologist 23, 1–20 (1980).Google Scholar
  85. 85.
    F. S. Sjöstrand and R. Z. Cassell, The structure of the surface membranes in rat heart muscle mitochondria as revealed by freeze-fracturing, J. Ultrastruct. Res. 63, 138–154 (1978).CrossRefGoogle Scholar
  86. 86.
    E. Andersson-Cedergren, Ultrastructure of motor-end-plate and sarcoplasmic components of mouse skeletal muscle fiber as revealed by three-dimensional reconstructions from serial sections, J. Ultrastruct. Res. (Suppl. 1) (1959).Google Scholar
  87. 87.
    W. F. Daems and E. Wisse, Shape and attachments of the cristae mitochondriales in mouse hepatic cell mitochondria, J. Ultrastruct. Res. 16, 123–140(1966).CrossRefGoogle Scholar
  88. 88.
    C. L. Cornar, R. H. Wasserman, and M. M. Nold, Strontium-calcium discrimination factors in the rat, Proc. Soc. Exp. Biol. Med. 92, 859 (1956).Google Scholar
  89. 89.
    G. C. H. Bauer and B. Wendeberg, External counting of Ca47 and Sr85 in studies of localized skeletal lesions in man, J. Bone J. Surg. 41B, 558–580 (1959).Google Scholar
  90. 90.
    M. R. Urist, Calcification and ossification. III. The role of local transfer of bone salt in the calcification of the fracture callus, J. Bone J. Surg. 24, 47 (1942).Google Scholar
  91. 91.
    H. Rasmussen and P. Bordier, The cellular basis of metabolic bone disease, N. Engl. J. Med. 289, 25–32(1973).CrossRefGoogle Scholar
  92. 92.
    H. Rasmussen, P. Bordier, K. Kurokawa, N. Nagata, and E. Ogata, Hormonal content of skeletal and mineral homeostasis, Am. J. Med. 56, 751–758 (1974).CrossRefGoogle Scholar
  93. 93.
    M. E. J. Curzoa and P. C. Spector, Strontium in human dental enamel, in: Handbook of Stable Strontium (S. C. Skoryna, ed.), pp. 581–592, Plenum, New York (1981).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Stanley C. Skoryna
    • 1
  • Martha Fuskova
    • 1
  1. 1.Medical Research Unit, St. Mary’s Hospital Center and Gastrointestinal Research LaboratoryMcGill UniversityMontrealCanada

Personalised recommendations