Strontium in Human Dental Enamel

  • M. E. J. Curzon
  • P. C. Spector


During the last 20 years some aspects of dental research have been concerned with the role of trace elements, other than fluoride, in the dental caries process. One element which has attracted attention has been Sr2+, which from both human and animal studies appears to have an association with low caries prevalence. The close relationship of Sr2+ to Ca2+ in the periodic table, with very similar properties, means that it can readily be substituted for Ca2+ in the hydroxyapatite crystal of human enamel (3). The possible influence of Sr2+ in increasing a tooth’s ability to resist dissolution by incorporation in the hydroxyapatite is appealing, and is currently emphasized in dental research.


Dental Caries Surface Enamel Dental Enamel Caries Prevalence Dental Research 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Anderson, Dental caries prevalence in relation to trace elements. Br. Dent. J. 120, 271–275 (1966).Google Scholar
  2. 2.
    D. E. Barnes, Caries aetiology in Sepik villages: Trace element, micronutrient, and macro-nutrient content of soil and food. Caries Res. 3, 44–59 (1969).CrossRefGoogle Scholar
  3. 3.
    J. Boyde, W. F. Neuman, and H. C. Hodge, On the mechanism of skeletal fixation of strontium. University of Rochester, Atomic Energy Project, No. UR 512, 1–16 (1958).Google Scholar
  4. 4.
    F. Brudevold, L. T. Steadman, M. A. Spinelli, Distribution of strontium in teeth from different geographic areas. Arch. Oral Biol. 8, 135–144 (1963).CrossRefGoogle Scholar
  5. 5.
    F. Brudevold, A. Reda, R. Aasenden, et al., Determination of trace elements in surface enamel of human teeth by a new biopsy procedure. Arch. Oral Biol. 20, 667–673 (1975).CrossRefGoogle Scholar
  6. 6.
    P. E. B. Calonius and A. Visäpaä, Inorganic constituents of human teeth and bone by x-ray emission spectrography. Arch. Oral Biol. 10, 9–13 (1965).CrossRefGoogle Scholar
  7. 7.
    M. E. J. Curzon, B. L. Adkins, B. G. Bibby, et al., Combined effect of trace elements and fluorine on caries. J. Dent. Res. 49, 526–529 (1970).CrossRefGoogle Scholar
  8. 8.
    M. E. J. Curzon, F. L. Losee, and A. D. Macalister, Trace elements in enamel of teeth from New Zealand and the USA. N.Z. Dent. J. 71, 80–83 (1975).Google Scholar
  9. 9.
    M. E. J. Curzon and F. L. Losee, Trace element composition of whole human enamel and dental caries. Part I: Eastern United States. J. Am. Dent. Assoc. 94, 1146–1150 (1977).Google Scholar
  10. 10.
    M. E. J. Curzon and F. L. Losee, Strontium content of enamel and dental caries. Caries Res. 11, 321–326(1977).CrossRefGoogle Scholar
  11. 11.
    M. E. J. Curzon, P. C. Spector, and H. P. Iker, An association between strontium in drinking water supplies and low caries prevalence. Arch. Oral Biol. 23, 647–653 (1978).CrossRefGoogle Scholar
  12. 12.
    T. W. Cutress, The inorganic composition and solubility of dental enamel from several specified population groups. Arch Oral Biol. 17, 93–109 (1972).CrossRefGoogle Scholar
  13. 13.
    N. L. Derise and S. J. Ritchey, Mineral composition of normal human enamel and dentin and the relation of composition to dental caries. J. Dent. Res. 53, 853–858 (1974).CrossRefGoogle Scholar
  14. 14.
    W. F. Drea, Spectrum analyses of dental tissues for “trace elements”. J. Dent. Res. 15, 403–406 (1936).Google Scholar
  15. 15.
    J. Dunning, The influence of latitude and distance from the sea coast on dental disease. J. Dent. Res. 32, 811–829(1953).CrossRefGoogle Scholar
  16. 16.
    I. Gedalia, J. Anaise, and E. Laufer, Effect of prenatal, pre-eruptive and post-eruptive strontium administration on dental caries in hamster molars. J. Dent. Res. 54, 1240 (1975).CrossRefGoogle Scholar
  17. 17.
    J. L. Hardwick and C. J. Martin, A pilot study using mass spectrometry for the estimation of the trace element content of dental tissues. Helv. Odont. Acta. 11, 62–70 (1967).Google Scholar
  18. 18.
    C. A. Helsby and G. S. Nixon, Estimation of strontium in human enamel. Abstract No. L544, Annual Meeting of the I.A.D.R., London (1975).Google Scholar
  19. 19.
    M. F. Little and L. T. Steadman, Chemical and physical properties of altered and sound enamel. IV, Trace elements. Arch. Oral Biol. 11, 273–278 (1966).CrossRefGoogle Scholar
  20. 20.
    M. F. Little and K. Barrett, Strontium and fluoride content of surface and inner enamel versus caries prevalence in the Atlantic coast of the United States of America. Caries Res. 10, 297–307 (1976).CrossRefGoogle Scholar
  21. 21.
    H. Lödrop, The low rate of dental decay in Bonn am Rhein and the conclusions that can be drawn from it. Den Norske Tanni. Tid. 63, 35–50 (1953).Google Scholar
  22. 22.
    F. L. Losee and B. L. Adkins, A study of the mineral environment of caries resistant Navy recruits. Caries Res. 3, 23–31 (1969).CrossRefGoogle Scholar
  23. 23.
    F. L. Losee, M. F. Little-McClellan, and G. M. Orbell, Strontium content of teeth related to geologic environment. Abstract No. 638, Annual Meeting of the I.A.D.R., London (1971).Google Scholar
  24. 24.
    F. L. Losee, T. W. Cutress, and R. Brown, Natural elements of the periodic table in human dental enamel. Caries Res. 8, 123–134 (1974).CrossRefGoogle Scholar
  25. 25.
    F. L. Losee, M. E. J. Curzon, and M. F. Little, Trace element concentrations in human enamel. Arch. Oral Biol. 19, 467–471 (1974).CrossRefGoogle Scholar
  26. 26.
    F. L. Losee, T. W. Cutress, and R. Brown, Trace elements in human dental enamel, in: Trace Substances in Environmental Health, Vol. VII, University of Missouri Press, Columbia, Missouri (1974).Google Scholar
  27. 27.
    F. Lowater and M. M. Murray, Chemical composition of teeth: spectrographic analysis. Biochem. J. 31, 837–843 (1937).Google Scholar
  28. 28.
    M. Lundberg, R. Söremark, and H. Thilander, The concentrations of some elements in the enamel of unerupted (impacted) human teeth. Odont. Revy. 16, 8–11 (1965).Google Scholar
  29. 29.
    T. G. Ludwig and B. G. Bibby, Geographic variations in the prevalence of dental caries in the U.S.A. Caries Res. 3, 32–43, 1969.CrossRefGoogle Scholar
  30. 30.
    C. Meyerowitz, M. F. Little, and M. E. J. Curzon, Sr in rat enamel and caries: A preliminary report. J. Dent. Res. (Spec. Issue) 55, B126 (1976).Google Scholar
  31. 31.
    M. S. Nichols and D. R. McNall, Strontium content of Wisconsin municipal waters. J. Am. Water Works Assoc. 49, 1493–1501 (1957).Google Scholar
  32. 32.
    G. S. Nixon and C. A. Helsby, The relationship between strontium in water supplies and human tooth enamel. Arch. Oral Biol. 21, 691–695 (1976).CrossRefGoogle Scholar
  33. 33.
    D.H. Retief, P. E. Cleaton-Jones, J. Turkstra et al., The quantitative analysis of sixteen elements in human enamel and dentine by neutron activation analysis and high resolution gamma spectrometry. Arch. Oral Biol. 16, 1257–1261 (1971).CrossRefGoogle Scholar
  34. 34.
    D. H. Retief, J. Turkstra, P. E. Cleaton-Jones, et al., Mineral composition of enamel from population groups with high and low caries. J. Dent. Res. (Spec. Issue) 57, 150 (1978).Google Scholar
  35. 35.
    I. Rytomaa, L. Kolehmainen, and H. Tuompo, Strontium content of deciduous teeth in northern and southern Finland. Acta. Odont. Scand. 33, 115–118 (1975).CrossRefGoogle Scholar
  36. 36.
    R. G. Schamschula, B. L. Adkins, D. E. Barnes, et al., A study of caries etiology in Papua New Guinea, World Health Organization Monograph No. 40, Geneva, Switzerland (1978).Google Scholar
  37. 37.
    R. Söremark and K. Samsahl, Gamma ray spectrometric analysis of elements in normal human enamel. Arch. Oral Biol. 6, 275–279 (1961).CrossRefGoogle Scholar
  38. 38.
    P. C. Spector and M. E. J. Curzon, Relationship of strontium in drinking water and surface enamel. J. Dent. Res. 57, 55–58 (1978).CrossRefGoogle Scholar
  39. 39.
    L. T. Steadman, F. Brudevold, and F. A. Smith, Distribution of strontium in teeth from different geographic areas. J. Am. Dent. Assoc. 57. 340–344 (1958).Google Scholar
  40. 40.
    N. Wolf, I. Gedalia, S. Yariv, et al., The strontium content of bones and teeth of human foetuses. Arch. Oral Biol. 18, 233–238, 1973.CrossRefGoogle Scholar
  41. 41.
    R. W. G. Wyckoff and A. R. Doberenz, The strontium content of fossil teeth and bones. Geochim. Cosmochim. Acta 32, 109–115, 1968.CrossRefGoogle Scholar
  42. 42.
    V. Vrbic and J. Stupar, Aluminij in stroncij v sledovih in zobni karies. Zobozdrav. Vestn. 32, 121–128(1977).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. E. J. Curzon
    • 1
  • P. C. Spector
    • 1
  1. 1.Department of Caries ResearchEastman Dental CenterRochesterUSA

Personalised recommendations