Strontium Metabolism and Mechanism of Interaction with Mineralized Tissues

  • Charles L. Wadkins
  • Chun Fu Peng


The general responses manifested by intact animals following oral administration of alkaline earth cations include incorporation into extracellular and intracellular spaces, the mineral phase of tooth and skeletal tissues (1–3). The availability of radioisotopes of several of those cations and the development of specific and sensitive analytical techniques have allowed more definitive quantitative studies (4,5). These studies revealed differential body retention as a function of time and the specific chemical species employed. In general, overall retention followed the relationship Ca2+ > Sr2+ > Ba2+ > Be2+. This relationship has been rationalized in terms of the specific involvement of intestinal absorption, incorporation into and resorption from bone, and kidney excretion (1,5).


Mineral Phase Mineralized Tissue Amorphous Calcium Phosphate Cartilage Calcification Alkaline Earth Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. P. Heaney, Calcium kinetics in plasma: As they apply to the measurements of bone formation rates, in: The Biochemistry and Physiology of Bone (G. H. Bourne, ed.), Vol. IV, pp. 106–133, Academic Press, New York (1976).Google Scholar
  2. 2.
    J. M. Vaughan, The Physiology of Bone, Clarendon Press, Oxford (1970).Google Scholar
  3. 3.
    P. G. Shipley and E. A. Park, Studies on experimental rickets. XX. The effects of strontium administration on the histological structure of growing bones, Johns Hopkins Hospital Bulletin 33, 216–221 (1922).Google Scholar
  4. 4.
    G. E. Harrison, T. E. F. Carr, and A. Sutton, Distribution of radioactive calcium, strontium, barium, and radium following intravenous injection into a healthy man, J. Radiat. Biol. 13, 235–247 (1967).CrossRefGoogle Scholar
  5. 5.
    G. E. Harrison, T. E. F. Carr, A. Sutton, and J. Rundo, Plasma concentration and excretion of calcium-47, strontium-85, barium-133, and radium-223 following successive intravenous doses to a healthy man, Nature (London) 209, 526–527 (1966).CrossRefGoogle Scholar
  6. 6.
    D. F. Travis, The comparative ultrastructure and organization of five calcified tissues, in: Biological CalcificationCellular and Molecular Aspects (H. Schraer, ed.), pp. 203–312, Appleton-Century-Crofts, New York (1970).Google Scholar
  7. 7.
    A. S. Posner, Crystal chemistry of bone mineral, Physiol. Rev. 49, 760–792 (1969).Google Scholar
  8. 8.
    J. D. Termine, Mineral chemistry and skeletal biology, Clin. Orthop. 85, 207–241 (1972).CrossRefGoogle Scholar
  9. 9.
    A. R. Johnson, W. D. Armstrong, and L. Singer, The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues of the rat, Cale. Tiss. Res. 2, 242–252 (1968).CrossRefGoogle Scholar
  10. 10.
    C. W. Weber, A. R. Doberenz, R. W. G. Wyckoff, and B. L. Reid, Strontium metabolism in chicks, Poultry Science 47, 1318–1323 (1968).Google Scholar
  11. 11.
    E. Schnell, W. Kiesevetter, Y. H. Kim, and E. Hayek, Zur Kenntnis der Orthostrontium Phosphate, Mh. Chem. 102, 1327–1340(1971).Google Scholar
  12. 12.
    N. S. MacDonald, F. Esmirlian, P. Spain, and N. C. Mc Arthur, The ultimate site of skeletal deposition of strontium and lead, J. Biol. Chem. 189, 387–399 (1951).Google Scholar
  13. 13.
    B. O. Fowler, Infrared studies of apatites. I. Vibrational Assignments for calcium, strontium, and barium hydroxyapatite utilizing isotopic substitution, Inorg. Chem. 13, 194–206 (1974).CrossRefGoogle Scholar
  14. 14.
    R. C. Likins, E. G. Berry, and A. S. Posner, Comparative fixation of calcium and strontium by snail shell, Ann. N. Y. Acad. Sci. 109, 269–275 (1963).CrossRefGoogle Scholar
  15. 15.
    P. L. Blackwelder, R. E. Weiss, and K. M. Wilbur, Effects of calcium, strontium, and magnesium on the coccolithophorid Cricosphaera carterae. I. Calcification. Marine Biol. 34, 11–16 (1976).CrossRefGoogle Scholar
  16. 16.
    R. E. Weiss, P. L. Blackwelder, and K. M. Wilbur, Effects of calcium, strontium, and magnesium on the coccolithophorid Cricosphaera carterae. II. Cell Division, Marine Biol. 34, 17–22(1976).CrossRefGoogle Scholar
  17. 17.
    F. W. Lengemann, Studies on the discrimination against strontium by bone grown in vitro, J. Biol. Chem. 235, 1859–1862(1960).Google Scholar
  18. 18.
    R. C. Likins, A. S. Posner, M. L. Kunde, and D. L. Craven, Comparative metabolism of calcium and strontium in the rat, Arch. Biochem. Biophys. 83, 472–481 (1959).CrossRefGoogle Scholar
  19. 19.
    J. T. Triffitt, R. O. Jones, and G. Patrick, Uptake of 45calcium and 85strontium by bone in tissue culture, Calc. Tiss. Res. 8, 211–216(1972).CrossRefGoogle Scholar
  20. 20.
    S. G. Kshirsager, E. Lloyd, and J. Vaughan, Discrimination between strontium and calcium in bone and the transfer from blood to bone in the rabbit, Br. J. Radiol. 39, 131–140 (1966).CrossRefGoogle Scholar
  21. 21.
    R. C. Likins, H. G. McCann, A. S. Posner, and D. B. Scott, Comparative fixation of calcium and strontium by synthetic hydroxyapatite, J. Biol. Chem. 235, 2152–2156 (1960).Google Scholar
  22. 22.
    E. Storey and V. C. West, Factors modifying Ca/ Sr discrimination by bone and synthetic apatite minerals in vitro, Cale. Tiss. Res. 6, 290–300 (1971).CrossRefGoogle Scholar
  23. 23.
    E. D. Eanes and A. S. Posner, Structure and chemistry of bone mineral, in: Biological Calcification—Cellular and Molecular Aspects (H. Schraer, ed.), pp. 1–26, Appleton-Century-Crofts, New York (1970).Google Scholar
  24. 24.
    W. F. Neuman, Blood-bone exchange, in: Bone Biodynamics (H. M. Frost, ed.), pp. 393–408. Little Brown and Co., Boston (1964).Google Scholar
  25. 25.
    W. F. Neuman, R. Bjornerstedt, and B. J. Mulryan, Synthetic hydroxyapatite crystals. II. Aging and strontium incorporation, Arch. Biochem. Biophys. 101, 215–224(1963).CrossRefGoogle Scholar
  26. 26.
    A. R. Schubert, E. A. Peets, D. Lazio, H. Spencer, M. Charles, and J. Samathson, Comparative methabolism of strontium and calcium in man, Int. J. Appl. Radiat. 4, 145–153 (1959).Google Scholar
  27. 27.
    W. F. Neuman and W. K. Ramp, The concept of a bone membrane: Some implications, in: Cellular Mechanisms for Calcium Transfer and Homeostasis (G. Nichols Jr., and R. H. Wasserman, eds.), p. 197, Academic Press, New York (1971).Google Scholar
  28. 28.
    C. L. Wadkins, Experimental factors that influence collagen calcification in vitro, Calc. Tiss. Res. 2, 214–228(1968).CrossRefGoogle Scholar
  29. 29.
    R. K. Jethi, M. G. Mackey, P. D. Meredith, and C. L. Wadkins, Studies of the mechanism of biological calcification III. The interaction of strontium with a calcifiable matrix from beef tendon, Calc. Tiss. Res. 9, 310–324 (1972).CrossRefGoogle Scholar
  30. 30.
    H. Fleish and W. F. Neuman, Mechanism of calcification: Role of collegen, polyphosphates, and phosphatase, Am. J. Physiol. 200, 1296–1300(1961).Google Scholar
  31. 31.
    M.J. Glimcher and S. M. Krane, The organization and structure of bone and the mechanism of calcification, in: Treatise on Collagen (G. N. Ramachandran and B. S. Gould, eds.), Vol. 2, Part B, p. 67, Academic Press, New York (1968).Google Scholar
  32. 32.
    M. J. Glimcher, Composition structure and organization of bone and other mineralized tissues and the mechanism of calcification, in: Handbook of Physiology, Section 2, Endocrinology, Vol. VII, Chapter 3, American Physiological Society, Washington, D.C. (1976).Google Scholar
  33. 33.
    W. C. Thomas Jr. and A. Tornita, Mineralization of human and bovine tissue in vitro, Am. J. Path. 51, 621–628 (1967).Google Scholar
  34. 34.
    C. Quittner and C. L. Wadkins, A macromolecular inhibitor of in vitro mineralization of tendon matrix, Calc. Tiss. Res. 25, 161–168 (1978).CrossRefGoogle Scholar
  35. 35.
    R. A. Luben, J. K. Sherman, and C. L. Wadkins, Studies of the mechanism of biological calcification. IV. Ultrastructural analysis of calcifying tendon matrix, Calc. Tiss. Res. 11, 39–55 (1973).CrossRefGoogle Scholar
  36. 36.
    C. L. Wadkins, R. Luben, M. Thomas, and R. Humphreys, Physical biochemistry of calcification, Clin. Orthop. 99, 246–266 (1974).CrossRefGoogle Scholar
  37. 37.
    A. Matsumoto, Effect of strontium on the epiphyseal cartilage plate of rat tibiae—histological and radiographic studies, Jpn. J. Pharmacol. 26, 675–681 (1976).CrossRefGoogle Scholar
  38. 38.
    A. E. Sobel and A. Hanok, Calcification. VII. Reversible inactivation of calcification in vitro and related studies, J. Biol. Chem. 197, 669–685 (1952).Google Scholar
  39. 39.
    G. R. Martin, E. Schiffman, H. A. Bloden, and M. Nylen, Chemical and morphological studies on the in vitro calcification of aorta, J. Cell. Biol. 16, 243–252 (1963).CrossRefGoogle Scholar
  40. 40.
    E. Shiffman, G. R. Martin, and B. A. Corcoran, The role of the matrix in aortic calcification, Arch. Biochem. Biophys. 107, 284–291 (1964).CrossRefGoogle Scholar
  41. 41.
    M. D. Haunt and J. C. Geer, Mechanism of calcification in spontaneous aortic arteriosclerotic lesions of the rabbit, Am. J. Pathol. 60, 329–347 (1970).Google Scholar
  42. 42.
    R. H. Wasserman, Studies on vitamin D3 and the intestinal absorption of calcium and other ions in the rachitic chick, J. Nutrition 77, 69–80 (1962).Google Scholar
  43. 43.
    D. Schachter and S. M. Rosen, Active transport of Ca2+ by the small intestine and its dependence on vitamin D, Am. J. Physiol. 196, 356–362 (1959).Google Scholar
  44. 44.
    J. L. Omdahl and H. F. DeLuca, Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis, J. Biol. Chem. 247, 5520–5526(1972).Google Scholar
  45. 45.
    R. A. Corradino and R. H. Wasserman, Strontium inhibition of vitamin D3-induced calcium binding protein and calcium absorption in chick intestine, Proc. Soc. Exp. Biol. Med. 133, 960–963(1970).Google Scholar
  46. 46.
    R. A. Corradino, J. G. Ebel, P. H. Craig, A. N. Taylor, and R. H. Wasserman, Calcium absorption and the vitamin D3-dependent calcium binding protein. I. Inhibition of dietary strontium, Calc. Tiss. Res. 7, 81–92 (1971).CrossRefGoogle Scholar
  47. 47.
    R. V. Talmage, Calcium homeostasis-calcium transport-parathyroid action, Clin. Orthop. 67, 210–224(1969).Google Scholar
  48. 48.
    A. B. Borle, Calcium metabolism at the cellular level, Fed. Proc. 32, 1944–1950 (1973).Google Scholar
  49. 49.
    A. L. Lehninger, E. Carafoli, C. Rossi, Energy linked ion movements in mitochondrial systems, in: Advances in Enzymology (F. F. Novd, ed.), Vol. 29, pp. 259–320, Interscience Publishers, New York (1967).Google Scholar
  50. 50.
    C. F. Peng, D. W. Price, C. Bhuvaneswaran, and C. L. Wadkins, Factors that influence phosphoenolpyruvate-induced calcium efflux from rat liver mitochondria, Biochem. Biophys. Res. Comm. 56, 134–141 (1974).CrossRefGoogle Scholar
  51. 51.
    J. L. Matthews and J. H. Martin, Intracellular transport of calcium and its relationship to homeostasis and mineralization-An electron microscope study, Am. J. Med. 50, 589–597 (1971).CrossRefGoogle Scholar
  52. 52.
    H. Clarke Anderson, Matrix vesicles of cartilage and bone, in: The Biochemistry and Physiology of Bone (G. H. Bourne, ed.) Vol. IV, pp. 135–157, Academic Press, New York (1976).Google Scholar
  53. 53.
    I. M. Shapiro and N. H. Lee, Calcium accumulation by chondrocyte mitochondria, Clin. Orthop. 106, 323–329 (1975).CrossRefGoogle Scholar
  54. 54.
    E. Carafoli, S. Weiland, and A. L. Lehninger, Active accumulation of Sr2+ by rat liver mitochondria. I. General features, Biochim. Biophys. Acta. 97, 88–98 (1965).CrossRefGoogle Scholar
  55. 55.
    E. Carafoli, Active accumulation of Sr2+ by rat liver mitochondria. II. competition between Ca2+ and Sr2+, Biochim. Biophys. Acta 97, 99–106 (1965).CrossRefGoogle Scholar
  56. 56.
    F. D. Vasington, P. Gazzotti, R. Tiozzo, and E. Carafoli, The effect of ruthenium ren on energy metabolism in mitochondria, in: The Biochemistry and Biophysics of Mitochondrial Membranes (F. F. Assona, E. Carafoli, A. L. Lehninger, E. Quagliariello, and N. Siliprandi, eds.), pp. 215–228, Academic Press, New York (1972).Google Scholar
  57. 57.
    M. Crompton, M. Capano, and E. Carafoli, The sodium induced efflux of calcium from heart mitochondria, Eur. J. Biochem. 69, 453–462 (1976).CrossRefGoogle Scholar
  58. 58.
    C. F. Peng, K. D. Straub, J. J. Kane, M. L. Murphy, and C. L. Wadkins, Effects of adenine neuclotide translocase inhibitors on dinitrophenol (DNP)-induced calcium efflux from pig heart mitochondria, Biochim. Biophys. Acta 462, 403–413 (1977).CrossRefGoogle Scholar
  59. 59.
    Y. Ogawa and S. Ebashi, Ca-releasing action of β-r-methylene adenosine triphosphate on fragmented sarcoplasmic reticulum, J. Biochem. 80, 1149–1157 (1976).Google Scholar
  60. 60.
    D. W. Urry, On the molecular basis for vascular calcification. Perspectives in biology and medicine, 18, 68–85(1974).Google Scholar
  61. 61.
    M. M. Long, I. Ohnishi, and D. W. Urry, Ion binding by repeat hexapeptide of elastin, Arch. Biochem. Biophys. 166, 187–192(1975).CrossRefGoogle Scholar
  62. 62.
    R. Spencer, M. Charman, P. Wilson, and E. Lawson, Vitamin D-stimulated intestinal calcium absorption may not involve calcium binding protein directly, Nature (London) 263, 161–163 (1976).CrossRefGoogle Scholar
  63. 63.
    A. P. Somlyo, A. V. Somlyo, C. E. Devine, P. D. Peters, and T. A. Hall, Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle, J. Cell Biol. 61, 723–742(1974).CrossRefGoogle Scholar
  64. 64.
    P. Caroni, K. Schwerzmann, and E. Carafoli, Separate pathways for Ca2+ uptake and release in liver mitochondria, FEBS Letters 96, 339–342 (1978).CrossRefGoogle Scholar
  65. 65.
    A. L. Lehninger, A. Vercesi, and E. A. Bababunmi, Regulation of Ca2+ release from mitochondria by the oxidation-reduction state of pyridine nucleotides, Proc. Natl. Acad. Sci. USA 75, 1690–1694(1978).CrossRefGoogle Scholar
  66. 66.
    E.J. Harris, Modulation of Ca2+ efflux from heart mitochondria, Bioch. J. 178,673–680(1979).Google Scholar
  67. 67.
    I. M. Shapiro and N. H. Lee, Effects of Ca2+ on the respiratory activity of chondrocyte mitochondria, Arch. Biochem. Biophys. 170, 627–633 (1975).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Charles L. Wadkins
    • 1
  • Chun Fu Peng
    • 1
  1. 1.Department of BiochemistryUniversity of Arkansas School of MedicineLittle RockUSA

Personalised recommendations