Effects of Stable Strontium Administration on Calcium Metabolism with Particular Reference to Low-Calcium Diet

  • Nevine El Solh
  • François Rousselet


The effects of stable Sr2+ salts have been studied for many years, chiefly to ascertain whether Sr2+ can replace Ca2+ in the skeleton. At the turn of the century the therapeutic use of SrBr2 in epilepsy and related neurogenic disorders stimulated interest in pharmacological effects of stable Sr2+and its virtual lack of toxicitv.


Calcium Metabolism Deficient Diet Single Intraperitoneal Injection Osteoid Tissue Stable Strontium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Lehnerdt, Zur frage der Substition des Calciums in Knochensystem durch Strontium, Beitz. Path. Anat. Allg. Path. 47, 215–245 (1910).Google Scholar
  2. 2.
    A. R. Johnson, W. D. Armstrong, and L. Singer, The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues of the rat, Calcif. Tissue Res. 2, 242–252 (1968).CrossRefGoogle Scholar
  3. 3.
    F. Rousselet, N. El Solh, J. P. Maurat, M. Gruson, and M. L. Girard, Strontium et metabolisme calcique. Interaction strontium-vitamine D, C.R. Seances Soc. Biol. 169, 322–329 (1975).Google Scholar
  4. 4.
    D. M. Greenberg, Studies in mineral metabolism with the aid of artificial radioactive isotopes, J. Biol. Chem. 157, 99–104(1945).Google Scholar
  5. 5.
    D. Gaster, E. Havivi, and K. Guggenheim, Interrelations of calcium, fluorure and vitamin D in bone metabolism, Br. J. Nutr. 21, 413–418 (1967).CrossRefGoogle Scholar
  6. 6.
    A. R. Ratsimamanga and C. Contensou, Action of strontium on growth of the young rat, C. R. Seances Soc. Biol Paris 157, 1759–1763 (1963).Google Scholar
  7. 7.
    C. R. Creger and L. B. Colvin, Strontium and bone development under conditions of suboptimal vitamin D, Calcif. Tissue Res. 8, 83–86 (1971).CrossRefGoogle Scholar
  8. 8.
    P. G. Shipley, E. A. Park, E. V. McCollum, N. Simmonds, and E. M. Kinney, Studies on experimental rickets. XX. The effects of strontium administration on the histological structure of the growing bones, Johns Hopkins Hosp. Bull. 33, 216–220 (1922).Google Scholar
  9. 9.
    A. E. Sobel, Y. Cohen, and B. Kramer, The nature of the injury to the calcifying mechanisms in rickets due to strontium, Biochem. J. 29, 2640–2645 (1935).Google Scholar
  10. 10.
    E. Storey, Intermittent bone changes and multiple cartilage deffects in chronic strontium rickets in rats, J. Bone Jt. Surg. 44B, 194–208 (1962).Google Scholar
  11. 11.
    E. Storey, Experimental epiphysial cartilage growth anomalies, J. Bone Jt. Surg. 47B, 145–156 (1965).Google Scholar
  12. 12.
    E. Storey, Calcium and strontium changes in bone associated with continuous administration of stable strontium to rats, Arch. Biochem. Biophys. 124, 575–581 (1968).CrossRefGoogle Scholar
  13. 13.
    A. Matsumoto, Effect of strontium on the epiphyseal cartilage plate of rat tibiae, Jpn. J. Pharmacol. 26, 675–681 (1976).CrossRefGoogle Scholar
  14. 14.
    L. B. Colvin and C. R. Creger, Stable strontium and experimental bone anomalies, Fed. Proc., Fed. Am. Soc. Exp. Biol. 26, 416 (1967).Google Scholar
  15. 15.
    N. S. McDonald, R. E. Nusbaum, R. Stearns, F. Ezmirlian, C. McArthur, and P. Spain, The skeletal deposition of non radioactive strontium, J. Biol. Chem. 188, 137–143 (1951).Google Scholar
  16. 16.
    R. A. Corradino, J. G. Ebel, P. H. Craig, A. N. Taylor, and R. H. Wasserman, Calcium absorption and the vitamin D3-dependent calcium-binding protein. I. Inhibition by dietary strontium, and II. Recovery from dietary strontium inhibition, Calcif. Tissue Res. 7, 81–92, 93–102(1971).CrossRefGoogle Scholar
  17. 17.
    J. H. Jones, The metabolism of calcium and phosphorus as influenced by the addition to the diet of salts of malats which form insoluble phosphates, Am. J. Physiol. 124, 230–237 (1938).Google Scholar
  18. 18.
    L. K. Diamond, Rickets in rats by iron feeding, J. Pediatr. 4, 442–453 (1934).CrossRefGoogle Scholar
  19. 19.
    A. E. Sobel, A. R. Goldfarb, and B. Kramer, Studies of incurable rickets. 1. Respective role of the local factor and vitamin D in healing, Proc. Soc. Exp. Biol. Med. 31, 869–870 (1934).Google Scholar
  20. 20.
    R. A. Corradino, Strontium inhibition of the vitamin D-induced calcium-binding protein and the intestinal calcium absorptive mechanism, Second International Conference on Strontium Metabolism, Glasgow—Strontian, August 16–19, Conference No. s, pp. 277–287 (1972).Google Scholar
  21. 21.
    A. E. Sobel, Local factors in the mechanism of calcification, Ann. N. Y. Acad. Sci. 60, 713–732 (1954).CrossRefGoogle Scholar
  22. 22.
    A. E. Sobel, S. Nobel, and A. Hanok, The reversible inactivation of calcification in vitro, Proc. Soc. Exp. Biol. Med. 72, 68–72 (1949).Google Scholar
  23. 23.
    F. W. Lengemann, Comparative metabolism of 89Sr and 45Ca by bone grown in vitro, Proc. Soc. Exp. Biol. Med. 94, 64–66 (1957).Google Scholar
  24. 24.
    G. Mazzuoli, E. Biagi, and G. Coen, Comparison of intravenous infusion of stable strontium with the calcium tolerance test, Acta Med. Scand. 170, 21–30 (1961).CrossRefGoogle Scholar
  25. 25.
    J. M. Warren and H. Spencer, Stable strontium balances in man, Second International Conference on Strontium Metabolism, Glasgow-Strontian, August 16–19, Conference No. 6, pp. 325–346(1972).Google Scholar
  26. 26.
    H. Spencer, H. Laszlo, I. Lewin, and J. Samachson, Studies of calcium metabolism in hyperparathyroidism with special reference to the calcium tolerance test, Acta Med. Scand. 170,547–560(1961).CrossRefGoogle Scholar
  27. 27.
    A. Schilling and D. Laszlo, Rate of urinary calcium excretion following its intravenous administration as an indicator of bone metabolism, Proc. Soc. Exp. Biol. Med. 78, 286–289 (1951).Google Scholar
  28. 28.
    J. C. Bartley and E. F. Reber, Metabolism of radiostrontium in young pigs and in lactating rats fed stable strontium, J. Dairy Sci. 44, 1754–1762 (1961).CrossRefGoogle Scholar
  29. 29.
    S. G. Kshirsagar, Effect of dietary strontium on the calcium and phosphorus content of liver, intestine and kidney rat, Indian J. Exp. Biol. 14, 424–427 (1976).Google Scholar
  30. 30.
    H. Spencer, I. Lewin, and J. Samachson, Effect of stable strontium on radiostrontium excretion in man, Radiat. Res. 31, 876–888 (1967).CrossRefGoogle Scholar
  31. 31.
    R. A. Corradino and R. H. Wasserman, Vitamin D3 = Induction of calcium-binding protein in embryonic chick intestine in vitro, Science 172, 731–733 (1971).CrossRefGoogle Scholar
  32. 32.
    A. N. Taylor and R. H. Wasserman, Correlations between the vitamin D-induced calcium-binding protein and intestinal absorption of calcium, Fed. Proc. 28, 1834–1838 (1969).Google Scholar
  33. 33.
    R. M. Wasserman, Vitamin D and the absorption of calcium and strontium in vitro, in: The Transfer of Calcium and Strontium across Biological Membranes (R. H. Wasserman, ed.), pp. 211–228, Academic Press, New York (1963).Google Scholar
  34. 34.
    T. Pento, The influence of interrupted vitamin D metabolism on acute low calcium adaptations in the rat, Nutr. Metab. 20, 321–328 (1976).CrossRefGoogle Scholar
  35. 35.
    D. Schachter, Vitamin D and the active transport of calcium by the small intestine, in: The Transfer of Calcium and Strontium across Biological Membranes (R. H. Wasserman, ed.), pp. 197–210, Academic Press, New York (1962).Google Scholar
  36. 36.
    J. L. Omdahl, R. W. Gray, I. T. Boyle, J. Knutson, and H. F. DeLuca, Regulation of metabolism of 25 hydroxycholecalciferol by kidney tissue in vitro by dietary calcium, Nature (London), New Biol. 237, 63–64 (1972).Google Scholar
  37. 37.
    R. A. Corradino and R. H. Wasserman, Strontium inhibition of vitamin D3-induced calcium-binding protein (Ca B.P.) and calcium absorption in chick intestine, Proc. Soc. Exp. Biol. Med. 133,960–963(1970).Google Scholar
  38. 38.
    R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, J. Gen. Physiol. 54, 114S-134S (1969).CrossRefGoogle Scholar
  39. 39.
    L. V. Aviolo, Absorption and metabolism of vitamin D3 in man, Am. J. Clin. Nutr. 22, 437–446(1969).Google Scholar
  40. 40.
    E. J. Chalk and E. Kodicek, The association of14 C-labeled vitamin D2 with rat serum proteins, Biochem. J. 79, 1–7(1961).Google Scholar
  41. 41.
    H. Rickkers and H. F. De Luca, An in vivo study of the carier proteins of3 H vitamin D3 and D4 in rat serum, Am. J. Physiol. 213, 380–386 (1967).Google Scholar
  42. 42.
    H. F. De Luca, 25 hydroxycholecalciferol, the probable metabolically active form of vitamin D. Isolation, identification and subcellular location, Am. J. Clin. Nutr. 22, 412–424 (1969).Google Scholar
  43. 43.
    G. Ponchon, A. L. Kennan, and H. F. De Luca, Activation of vitamin D by the liver, J. Clin. Investig. 48, 2032–2037 (1969).CrossRefGoogle Scholar
  44. 44.
    M. Bhattacharyya and H. F. De Luca, Subcellular location of rat liver calciferol-25-hydroxylase, Arch. Biochem. Biophys. 160, 58–72 (1974).CrossRefGoogle Scholar
  45. 45.
    D. Hioco, L. Miravet, and Ph. Bordier, Activite biologique du 25 hydroxycholecalciferol dans les osteomalacics vitamino résistantes, Calcif. J. Tissue Res. 4 (Suppl.), 47–48 (1970).CrossRefGoogle Scholar
  46. 46.
    P. Cuisinier-Gleizes, A. George, C. Guiliano, and H. Mathieu, Comparative effects of 25 HCC. and vitamin D3 in thyroparathyroidectomized rats, Rev. Eur. Etud. Clin. Biol. 16, 1017–1022 (1971).Google Scholar
  47. 47.
    C. Y. C. Pak, H. F. De Luca, J. M. Chavez De Los Rios, T. Suda, B. Ruskin, and C. S. Delea, Treatment of vitamin D resistant hypoparathyroidism with 25-hydroxycholecalciferol, Arch. Intern. Med. 126, 239–247 (1970).CrossRefGoogle Scholar
  48. 48.
    R. G. Wong, A. W. Norman, C. R. Reddy, and J. W. Coburn, Biologic effects of 1,25 dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats, J. Clin. Investig. 51 1287–1291 (1972).CrossRefGoogle Scholar
  49. 49.
    R. J. Midgett, A. M. Spielvogel, J. W. Coburn, and A. W. Norman, Studies calciferol metabolism. VI. The renal production of the biologically active form of vitamin D, 1–25 DHCC; species, tissue and subcellular distribution, J. Clin. Endocrinol. 36, 1153–1161 (1973).CrossRefGoogle Scholar
  50. 50.
    M. F. Holick, H. K. Schnoes, and H. F. De Luca, Identification of 1,25 dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine, Proc. Natl. Acad. Sci. U.S.A. 68,803–804(1971).CrossRefGoogle Scholar
  51. 51.
    J. F. Myrtle and A. W. Norman, Vitamin D: A cholecalciferol metabolite highly active in promoting intestinal calcium transport, Science 171, 79–84 (1971).CrossRefGoogle Scholar
  52. 52.
    A. W. Norman, R. J. Midgett, J. F. Myrtle, and H. G. Nowiscki, Studies on calciferol metabolism. I. Production of vitamin D metabolite 4 B from 25 hydroxycholecalciferol by kidney homogenates, Biochem. Biophys. Res. Comm. 43, 1082–1087(1971).CrossRefGoogle Scholar
  53. 53.
    D. R. Fraser and E. Kodicek, Unique biosynthesis by kidney of a biologically active vitamin D metabolite, Nature (London) 228, 764–766 (1970).CrossRefGoogle Scholar
  54. 54.
    J. G. Ghazarian, H. K. Schnoes, and H. F. De Luca, Mechanism of 25 hydroxycholecalciferol 1 α-hydroxylation. Incorporation of oxygen-18 into the 1 α position of 25 hydroxycholecalciferol, Biochemistry 12, 2555–2558 (1973).CrossRefGoogle Scholar
  55. 55.
    H. L. Henry and A. W. Norman, Studies on calciferol metabolism. IX. Renal 25 hydroxy-vitamin D3–1-hydroxylase—Involvement of cytochrome P-450 and other properties, J. Biol. Chem. 249, 7529–7535 (1974).Google Scholar
  56. 56.
    H. F. De Luca, Vitamin D: The vitamin and the hormone, Fed. Proc. 33, 2211–2219 (1974).Google Scholar
  57. 57.
    Y. Tanaka and H. F. De Luca, The control of 25 hydroxy vitamin D metabolism by inorganic phosphorus, Arch. Biochem. Biophys. 154, 566–574 (1973).CrossRefGoogle Scholar
  58. 58.
    A. W. Norman and R. G. Wong, Biological activity of the vitamin D metabolite 1,25 dihydroxycholecalciferol in chickens and rats, J. Nutr. 102, 1709–1718 (1972).Google Scholar
  59. 59.
    A. S. Brickman, C. R. Reddy, J. W. Coburn, E. Passaro, and A. W. Norman, Biologic action of 1,25 dihydroxy-vitamin D3 in the rachitic dog, Endocrinology 92, 725–734 (1973).CrossRefGoogle Scholar
  60. 60.
    A. S. Brickman, J. W. Coburn, S. G. Massry, and A. W. Norman, 1,25 dihydroxy-vitamin D3 in normal man and patients with renal failure, Ann. Intern. Med. 80, 161–168 (1974).Google Scholar
  61. 61.
    A. W. Norman and H. Henry, 1,25 dihydroxycholecalciferol. A hormonally active form of vitamin D3, Recent Prog. Horm. Res. 30, 431–480 (1974).Google Scholar
  62. 62.
    R. G. Wong, J. F. Myrtle, H. C. Tai, and A. W. Norman, Studies on calciferol metabolism. V. The occurence and biological activity of 1,25 dihydroxy-vitamin D3 in bone, J. Biol. Chem. 247, 5728–5735(1972).Google Scholar
  63. 63.
    A. S. Brickman, J. W. Coburn, and A. W. Norman, Action of 1,25 dihydroxycholecalciferol, a potent, kidney-produced metabolite of vitamin D3, in uremic man, N Engl. J. Med. 287, 891–895(1972).CrossRefGoogle Scholar
  64. 64.
    Y. Tanaka and H. F. De Luca, Stimulation of 24–25 dihydroxy-vitamin D3 production by 1,25 dihydroxy-vitamin D3, Science 183, 1198–1200 (1974).CrossRefGoogle Scholar
  65. 65.
    A. W. Norman, The hormone like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine, Vitam. Horm. 32, 325–384 (1974).CrossRefGoogle Scholar
  66. 66.
    M. Garabedian, M. F. Holick, H. F. De Luca and I. T. Boyle, Control of 25 hy-droxycholecalciferol metabolism by the parathyroid glands, Proc. Nat. Acad. Sci. U.S.A. 69, 1673–1676(1972).CrossRefGoogle Scholar
  67. 67.
    D. R. Fraser and E. Kodicek, Regulation of 25 hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone, Nature (London), New Biol. 241, 163–166 (1973).Google Scholar
  68. 68.
    M. F. Holick, A. Kleiner-Bossaller, H. K. Schnoes, P. M. Kasten, I. T. Boyle, and H. F. De Luca, 1,24,25-Trihydroxy vitamin D3: A metabolite of vitamin D3 effective on intestine, J. Biol. Chem. 248, 6691–6696 (1973).Google Scholar
  69. 69.
    A. Kleiner-Bossaller and H. F. De Luca, Formation of 1,24,25-trihydroxy vitamin D3 from 1,25-dihydroxy vitamin D3, Bioch. Biophys. Acta 338, 489–495 (1974).CrossRefGoogle Scholar
  70. 70.
    J. L. Omdahl and H. F. De Luca, Strontium induced rickets: Metabolic basis, Science 174, 949–951 (1971).CrossRefGoogle Scholar
  71. 71.
    J. L. Omdahl and H. F. De Luca, Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis, J. Biol. Chem. 247, 5520–5525 (1972).Google Scholar
  72. 72.
    D. L. Miller and H. P. Schedi, Effects of experimental diabetes on intestinal strontium absorption in the rat, Proc. Soc. Exp. Biol. Med. 152, 589–592 (1976).Google Scholar
  73. 73.
    T. E. F. Carr, An attempt to quantitate the short-term movement of strontium in the human adult, in Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 139–148, Academic Press, London and New York (1967).Google Scholar
  74. 74.
    S. H. Cohn and E. A. Gumano, Kinetics of strontium and calcium skeletal metabolism in the rat, Proc. Soc. Exp. Biol. Med. 126, 79–83 (1967).Google Scholar
  75. 75.
    E. Eisenberg and G. S. Gordan, Skeletal dynamics in man measured by non radioactive strontium, J. Clin. Invest. 40, 1809–1825(1961).CrossRefGoogle Scholar
  76. 76.
    J. Rundo, Kinetics of strontium-85 deposition in the skeleton during chronic exposure, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 131–138, Academic Press, London and New York (1966).Google Scholar
  77. 77.
    E. Lioyd, Relative binding of strontium and calcium in protein and non protein fractions of serum in the rabbit, Nature (London) 217, 355–356 (1968).CrossRefGoogle Scholar
  78. 78.
    J. Samachson and H. Lederer, Comparative ultrafiltration of calcium and strontium in serum, Proc. Soc. Exp. Biol Med. 98, 867–870 (1958).Google Scholar
  79. 79.
    J. Szymendera and S. Madajewicz, Comparative ultrafiltrability of calcium and strontium in human plasma, Nature (London) 217, 968–970 (1968).CrossRefGoogle Scholar
  80. 80.
    N. El Solh, F. Rousselet, and M. L. Girard, A study on protein-strontium bonds, Second International Conference on Strontium Metabolism, Glasgow—Strontian, August 16–19, pp. 255–272(1972).Google Scholar
  81. 81.
    G. E. Harrison, E. Lumsden, W. H. A. Raymond and A. Sutton, On the mechanisms of skeletal fixation of strontium (Part I.), Arch. Biochem. Biophys. 80, 97–105 (1959).CrossRefGoogle Scholar
  82. 82.
    K. Krawieltzki, Aufstellung eines Multikompartmentsystems für den Stoffwechsel der Bone-seeking-Elemente, Arch. Tierernahr. 18, 358–377(1968).Google Scholar
  83. 83.
    W. F. Neuman, R. Bjornerstedt, and B. J. Mulryan, Synthetic hydroxyapatite crystals. II. Aging and strontium incorporation, Arch. Biochem. Biophys. 101, 215–224 (1963).CrossRefGoogle Scholar
  84. 84.
    N. S. McDonald, F. Ezmirlian, P. Spain, and C. McArthur, The ultimate site of skeletal deposition of strontium and lead, J. Biol. Chem. 189, 387–399 (1951).Google Scholar
  85. 85.
    W. F. Neman and M. W. Neuman, Energing concepts of the structure and metabolic functions of bone, Am. J. Med. 22, 123–131 (1957).CrossRefGoogle Scholar
  86. 86.
    W. F. Neman and M. W. Neuman, The nature of the mineral phase of bone, Chem. Rev. 53, 1–45(1953).CrossRefGoogle Scholar
  87. 87.
    M. R. Haussler, Vitamin D: Mode of action and biomedical applications, Nutr. Rev. 32, 257–266(1974).CrossRefGoogle Scholar
  88. 88.
    R. A. Corradino, Embryonic chick intestine in organ culture. A unique system for the study of the intestinal calcium absorptive mechanism, J. Cell Biol. 58, 64–78 (1973).CrossRefGoogle Scholar
  89. 89.
    J. S. Emtage, D. E. M. Lawson, and E. Kodicek, Vitamin D induced synthesis of m RNA for calcium binding protein, Nature (London) 246, 100–101 (1973).CrossRefGoogle Scholar
  90. 90.
    L. Miravet, M. L. Queille, M. Carre, P. Bordier, and J. Redel, Les metabolites de la vitamine D: leur action sur Tos des rats carrences en vitamine D, Ann. Biol. Anim. Biochem. Biophys. 181, 187–193(1978).CrossRefGoogle Scholar
  91. 91.
    N. Sirgente and M. L’Heureux, In vitro biosynthesis of calcitonin, Proc. Soc. Exp. Biol. Med. 136, 80–84(1971).Google Scholar
  92. 92.
    R. Buckle, The regulation of calcium metabolism, Proc. R. Soc. Med. 63 (9), 871–875 (1970).Google Scholar
  93. 93.
    C. C. Capen, Fine structural alterations of parathyroid glands in response to experimental and spontaneous changes of calcium in extra cellular fluids, Am. J. Med. 50, 598–611 (1971).CrossRefGoogle Scholar
  94. 94.
    S. B. Oldham, J. A. Fischer, G. W. Sizemore, and C. D. Arnaud, Calcium dependent enzymatic conversion of glandular to secreted parathyroid hormone, in Calcium Parathyroid Hormone and the Calcitonins (R. V. Talmage and P. L. Munson, eds.), pp. 213–218, Excerpta Medica, Amsterdam (1972).Google Scholar
  95. 95.
    L. M. Sherwood, M. Abe, J. S. Rodman, W. B. Lundberg, and J. H. Targovnik, Jr., Parathyroid hormone: Synthesis, storage and secretion, in Calcium, Parathyroid Hormone and the Calcitonins (R. V. Talmage and P. L. Munson, eds.), pp. 183–196, Excerpta Medica, Amsterdam (1972).Google Scholar
  96. 96.
    J. Escanero, M. Carre, and L. Miravet, Effets des différents metabolites de la vitamine D3 et de la concentration calcique sur l’absorption intestinale du strontium, C. R. Seances Soc. Biol. 170, 47–53(1976).Google Scholar
  97. 97.
    H. Spencer, J. Samachson, B. Kabakow, and D. Laszlo, Factors modifying radiostrontium excretion in man, Clin. Sci. 17, 291–301 (1958).Google Scholar
  98. 98.
    H. Spencer, J. Samachson, E. P. Hardy, and J. Rivera, Effect of orally and intravenously administered stable strontium on90Sr metabolism in man, Radiat. Res. 51, 190–203 (1972).CrossRefGoogle Scholar
  99. 99.
    H. Spencer, M. Brothers, E. Berger, H. E. Hart, and D. Laszlo, Strontium-85 metabolism in man and effect of calcium on strontium excretion, Proc. Soc. Exp. Biol. Med. 91, 155–157 (1956).Google Scholar
  100. 100.
    M. Walser, Calcium clearance as a function of sodium clearance in the dog, Am. J. Physiol. 200, 1099–1104(1961).Google Scholar
  101. 101.
    L. Miravet, J. Redel, M. Carre, M. L. Queille, and P. Bordier, The biological activity of synthetic 25,26-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol in vitamin D-deficient rats, Calcif. J. Tissue Res. 21, 145–152 (1976).CrossRefGoogle Scholar
  102. 102.
    E. Shorr and A. C. Carter, The value of strontium as an adjuvant to calcium in the remineralization of the skeleton in osteoporosis in man, in Metabolic Interrelations: Transactions of the Second Conference (E. C. Reifenstein, ed.), pp. 144–154, Josiah Macy, Jr., Foundation, New York (1950).Google Scholar
  103. 103.
    E. Shorr and A. C. Carter, The usefulness of strontium as an adjuvant to calcium in the remineralisation of the skeleton in man, Bull. Hosp. Jt. Dis. 13, 59 (1952).Google Scholar
  104. 104.
    F. E. McCaslin and J. M. Janes, The effect of strontium lactate in the treatment of osteoporosis, Proc. Mayo Clin. 34, 329–334(1959).Google Scholar
  105. 105.
    A. Ryckewaert, D. Kuntz, J. P. Teyssedou, S. Tun Chot, P. Bordier, and D. Hiocco, Etude histologique de Tos chez des sujets osteoporotiques en traitement prolongé par le fluorure de sodium. Rev. Rhumatisme 39(10), 627–634 (1972).Google Scholar
  106. 106.
    A. Ryckewaert, V. Lemaire, and M. Tubiana, Traitements médicamenteux non hormonaux de la maladie de Paget. Rev. Rhumatisme 42(11), 693–698 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Nevine El Solh
    • 1
  • François Rousselet
    • 1
  1. 1.Department of BiochemistryParis V UniversityParisFrance

Personalised recommendations