Skip to main content

Effects of Stable Strontium Administration on Calcium Metabolism with Particular Reference to Low-Calcium Diet

  • Chapter
Book cover Handbook of Stable Strontium

Abstract

The effects of stable Sr2+ salts have been studied for many years, chiefly to ascertain whether Sr2+ can replace Ca2+ in the skeleton. At the turn of the century the therapeutic use of SrBr2 in epilepsy and related neurogenic disorders stimulated interest in pharmacological effects of stable Sr2+and its virtual lack of toxicitv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Lehnerdt, Zur frage der Substition des Calciums in Knochensystem durch Strontium, Beitz. Path. Anat. Allg. Path. 47, 215–245 (1910).

    Google Scholar 

  2. A. R. Johnson, W. D. Armstrong, and L. Singer, The incorporation and removal of large amounts of strontium by physiologic mechanisms in mineralized tissues of the rat, Calcif. Tissue Res. 2, 242–252 (1968).

    Article  CAS  Google Scholar 

  3. F. Rousselet, N. El Solh, J. P. Maurat, M. Gruson, and M. L. Girard, Strontium et metabolisme calcique. Interaction strontium-vitamine D, C.R. Seances Soc. Biol. 169, 322–329 (1975).

    CAS  Google Scholar 

  4. D. M. Greenberg, Studies in mineral metabolism with the aid of artificial radioactive isotopes, J. Biol. Chem. 157, 99–104(1945).

    CAS  Google Scholar 

  5. D. Gaster, E. Havivi, and K. Guggenheim, Interrelations of calcium, fluorure and vitamin D in bone metabolism, Br. J. Nutr. 21, 413–418 (1967).

    Article  CAS  Google Scholar 

  6. A. R. Ratsimamanga and C. Contensou, Action of strontium on growth of the young rat, C. R. Seances Soc. Biol Paris 157, 1759–1763 (1963).

    CAS  Google Scholar 

  7. C. R. Creger and L. B. Colvin, Strontium and bone development under conditions of suboptimal vitamin D, Calcif. Tissue Res. 8, 83–86 (1971).

    Article  CAS  Google Scholar 

  8. P. G. Shipley, E. A. Park, E. V. McCollum, N. Simmonds, and E. M. Kinney, Studies on experimental rickets. XX. The effects of strontium administration on the histological structure of the growing bones, Johns Hopkins Hosp. Bull. 33, 216–220 (1922).

    CAS  Google Scholar 

  9. A. E. Sobel, Y. Cohen, and B. Kramer, The nature of the injury to the calcifying mechanisms in rickets due to strontium, Biochem. J. 29, 2640–2645 (1935).

    CAS  Google Scholar 

  10. E. Storey, Intermittent bone changes and multiple cartilage deffects in chronic strontium rickets in rats, J. Bone Jt. Surg. 44B, 194–208 (1962).

    CAS  Google Scholar 

  11. E. Storey, Experimental epiphysial cartilage growth anomalies, J. Bone Jt. Surg. 47B, 145–156 (1965).

    Google Scholar 

  12. E. Storey, Calcium and strontium changes in bone associated with continuous administration of stable strontium to rats, Arch. Biochem. Biophys. 124, 575–581 (1968).

    Article  CAS  Google Scholar 

  13. A. Matsumoto, Effect of strontium on the epiphyseal cartilage plate of rat tibiae, Jpn. J. Pharmacol. 26, 675–681 (1976).

    Article  CAS  Google Scholar 

  14. L. B. Colvin and C. R. Creger, Stable strontium and experimental bone anomalies, Fed. Proc., Fed. Am. Soc. Exp. Biol. 26, 416 (1967).

    Google Scholar 

  15. N. S. McDonald, R. E. Nusbaum, R. Stearns, F. Ezmirlian, C. McArthur, and P. Spain, The skeletal deposition of non radioactive strontium, J. Biol. Chem. 188, 137–143 (1951).

    Google Scholar 

  16. R. A. Corradino, J. G. Ebel, P. H. Craig, A. N. Taylor, and R. H. Wasserman, Calcium absorption and the vitamin D3-dependent calcium-binding protein. I. Inhibition by dietary strontium, and II. Recovery from dietary strontium inhibition, Calcif. Tissue Res. 7, 81–92, 93–102(1971).

    Article  CAS  Google Scholar 

  17. J. H. Jones, The metabolism of calcium and phosphorus as influenced by the addition to the diet of salts of malats which form insoluble phosphates, Am. J. Physiol. 124, 230–237 (1938).

    CAS  Google Scholar 

  18. L. K. Diamond, Rickets in rats by iron feeding, J. Pediatr. 4, 442–453 (1934).

    Article  Google Scholar 

  19. A. E. Sobel, A. R. Goldfarb, and B. Kramer, Studies of incurable rickets. 1. Respective role of the local factor and vitamin D in healing, Proc. Soc. Exp. Biol. Med. 31, 869–870 (1934).

    Google Scholar 

  20. R. A. Corradino, Strontium inhibition of the vitamin D-induced calcium-binding protein and the intestinal calcium absorptive mechanism, Second International Conference on Strontium Metabolism, Glasgow—Strontian, August 16–19, Conference No. s, pp. 277–287 (1972).

    Google Scholar 

  21. A. E. Sobel, Local factors in the mechanism of calcification, Ann. N. Y. Acad. Sci. 60, 713–732 (1954).

    Article  Google Scholar 

  22. A. E. Sobel, S. Nobel, and A. Hanok, The reversible inactivation of calcification in vitro, Proc. Soc. Exp. Biol. Med. 72, 68–72 (1949).

    CAS  Google Scholar 

  23. F. W. Lengemann, Comparative metabolism of 89Sr and 45Ca by bone grown in vitro, Proc. Soc. Exp. Biol. Med. 94, 64–66 (1957).

    CAS  Google Scholar 

  24. G. Mazzuoli, E. Biagi, and G. Coen, Comparison of intravenous infusion of stable strontium with the calcium tolerance test, Acta Med. Scand. 170, 21–30 (1961).

    Article  CAS  Google Scholar 

  25. J. M. Warren and H. Spencer, Stable strontium balances in man, Second International Conference on Strontium Metabolism, Glasgow-Strontian, August 16–19, Conference No. 6, pp. 325–346(1972).

    Google Scholar 

  26. H. Spencer, H. Laszlo, I. Lewin, and J. Samachson, Studies of calcium metabolism in hyperparathyroidism with special reference to the calcium tolerance test, Acta Med. Scand. 170,547–560(1961).

    Article  Google Scholar 

  27. A. Schilling and D. Laszlo, Rate of urinary calcium excretion following its intravenous administration as an indicator of bone metabolism, Proc. Soc. Exp. Biol. Med. 78, 286–289 (1951).

    CAS  Google Scholar 

  28. J. C. Bartley and E. F. Reber, Metabolism of radiostrontium in young pigs and in lactating rats fed stable strontium, J. Dairy Sci. 44, 1754–1762 (1961).

    Article  Google Scholar 

  29. S. G. Kshirsagar, Effect of dietary strontium on the calcium and phosphorus content of liver, intestine and kidney rat, Indian J. Exp. Biol. 14, 424–427 (1976).

    CAS  Google Scholar 

  30. H. Spencer, I. Lewin, and J. Samachson, Effect of stable strontium on radiostrontium excretion in man, Radiat. Res. 31, 876–888 (1967).

    Article  CAS  Google Scholar 

  31. R. A. Corradino and R. H. Wasserman, Vitamin D3 = Induction of calcium-binding protein in embryonic chick intestine in vitro, Science 172, 731–733 (1971).

    Article  CAS  Google Scholar 

  32. A. N. Taylor and R. H. Wasserman, Correlations between the vitamin D-induced calcium-binding protein and intestinal absorption of calcium, Fed. Proc. 28, 1834–1838 (1969).

    CAS  Google Scholar 

  33. R. M. Wasserman, Vitamin D and the absorption of calcium and strontium in vitro, in: The Transfer of Calcium and Strontium across Biological Membranes (R. H. Wasserman, ed.), pp. 211–228, Academic Press, New York (1963).

    Google Scholar 

  34. T. Pento, The influence of interrupted vitamin D metabolism on acute low calcium adaptations in the rat, Nutr. Metab. 20, 321–328 (1976).

    Article  CAS  Google Scholar 

  35. D. Schachter, Vitamin D and the active transport of calcium by the small intestine, in: The Transfer of Calcium and Strontium across Biological Membranes (R. H. Wasserman, ed.), pp. 197–210, Academic Press, New York (1962).

    Google Scholar 

  36. J. L. Omdahl, R. W. Gray, I. T. Boyle, J. Knutson, and H. F. DeLuca, Regulation of metabolism of 25 hydroxycholecalciferol by kidney tissue in vitro by dietary calcium, Nature (London), New Biol. 237, 63–64 (1972).

    CAS  Google Scholar 

  37. R. A. Corradino and R. H. Wasserman, Strontium inhibition of vitamin D3-induced calcium-binding protein (Ca B.P.) and calcium absorption in chick intestine, Proc. Soc. Exp. Biol. Med. 133,960–963(1970).

    CAS  Google Scholar 

  38. R. H. Wasserman, R. A. Corradino, and A. N. Taylor, Binding proteins from animals with possible transport function, J. Gen. Physiol. 54, 114S-134S (1969).

    Article  CAS  Google Scholar 

  39. L. V. Aviolo, Absorption and metabolism of vitamin D3 in man, Am. J. Clin. Nutr. 22, 437–446(1969).

    Google Scholar 

  40. E. J. Chalk and E. Kodicek, The association of14 C-labeled vitamin D2 with rat serum proteins, Biochem. J. 79, 1–7(1961).

    CAS  Google Scholar 

  41. H. Rickkers and H. F. De Luca, An in vivo study of the carier proteins of3 H vitamin D3 and D4 in rat serum, Am. J. Physiol. 213, 380–386 (1967).

    Google Scholar 

  42. H. F. De Luca, 25 hydroxycholecalciferol, the probable metabolically active form of vitamin D. Isolation, identification and subcellular location, Am. J. Clin. Nutr. 22, 412–424 (1969).

    Google Scholar 

  43. G. Ponchon, A. L. Kennan, and H. F. De Luca, Activation of vitamin D by the liver, J. Clin. Investig. 48, 2032–2037 (1969).

    Article  CAS  Google Scholar 

  44. M. Bhattacharyya and H. F. De Luca, Subcellular location of rat liver calciferol-25-hydroxylase, Arch. Biochem. Biophys. 160, 58–72 (1974).

    Article  CAS  Google Scholar 

  45. D. Hioco, L. Miravet, and Ph. Bordier, Activite biologique du 25 hydroxycholecalciferol dans les osteomalacics vitamino résistantes, Calcif. J. Tissue Res. 4 (Suppl.), 47–48 (1970).

    Article  Google Scholar 

  46. P. Cuisinier-Gleizes, A. George, C. Guiliano, and H. Mathieu, Comparative effects of 25 HCC. and vitamin D3 in thyroparathyroidectomized rats, Rev. Eur. Etud. Clin. Biol. 16, 1017–1022 (1971).

    CAS  Google Scholar 

  47. C. Y. C. Pak, H. F. De Luca, J. M. Chavez De Los Rios, T. Suda, B. Ruskin, and C. S. Delea, Treatment of vitamin D resistant hypoparathyroidism with 25-hydroxycholecalciferol, Arch. Intern. Med. 126, 239–247 (1970).

    Article  CAS  Google Scholar 

  48. R. G. Wong, A. W. Norman, C. R. Reddy, and J. W. Coburn, Biologic effects of 1,25 dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats, J. Clin. Investig. 51 1287–1291 (1972).

    Article  CAS  Google Scholar 

  49. R. J. Midgett, A. M. Spielvogel, J. W. Coburn, and A. W. Norman, Studies calciferol metabolism. VI. The renal production of the biologically active form of vitamin D, 1–25 DHCC; species, tissue and subcellular distribution, J. Clin. Endocrinol. 36, 1153–1161 (1973).

    Article  CAS  Google Scholar 

  50. M. F. Holick, H. K. Schnoes, and H. F. De Luca, Identification of 1,25 dihydroxycholecalciferol, a form of vitamin D3 metabolically active in the intestine, Proc. Natl. Acad. Sci. U.S.A. 68,803–804(1971).

    Article  CAS  Google Scholar 

  51. J. F. Myrtle and A. W. Norman, Vitamin D: A cholecalciferol metabolite highly active in promoting intestinal calcium transport, Science 171, 79–84 (1971).

    Article  CAS  Google Scholar 

  52. A. W. Norman, R. J. Midgett, J. F. Myrtle, and H. G. Nowiscki, Studies on calciferol metabolism. I. Production of vitamin D metabolite 4 B from 25 hydroxycholecalciferol by kidney homogenates, Biochem. Biophys. Res. Comm. 43, 1082–1087(1971).

    Article  Google Scholar 

  53. D. R. Fraser and E. Kodicek, Unique biosynthesis by kidney of a biologically active vitamin D metabolite, Nature (London) 228, 764–766 (1970).

    Article  CAS  Google Scholar 

  54. J. G. Ghazarian, H. K. Schnoes, and H. F. De Luca, Mechanism of 25 hydroxycholecalciferol 1 α-hydroxylation. Incorporation of oxygen-18 into the 1 α position of 25 hydroxycholecalciferol, Biochemistry 12, 2555–2558 (1973).

    Article  CAS  Google Scholar 

  55. H. L. Henry and A. W. Norman, Studies on calciferol metabolism. IX. Renal 25 hydroxy-vitamin D3–1-hydroxylase—Involvement of cytochrome P-450 and other properties, J. Biol. Chem. 249, 7529–7535 (1974).

    CAS  Google Scholar 

  56. H. F. De Luca, Vitamin D: The vitamin and the hormone, Fed. Proc. 33, 2211–2219 (1974).

    Google Scholar 

  57. Y. Tanaka and H. F. De Luca, The control of 25 hydroxy vitamin D metabolism by inorganic phosphorus, Arch. Biochem. Biophys. 154, 566–574 (1973).

    Article  CAS  Google Scholar 

  58. A. W. Norman and R. G. Wong, Biological activity of the vitamin D metabolite 1,25 dihydroxycholecalciferol in chickens and rats, J. Nutr. 102, 1709–1718 (1972).

    CAS  Google Scholar 

  59. A. S. Brickman, C. R. Reddy, J. W. Coburn, E. Passaro, and A. W. Norman, Biologic action of 1,25 dihydroxy-vitamin D3 in the rachitic dog, Endocrinology 92, 725–734 (1973).

    Article  Google Scholar 

  60. A. S. Brickman, J. W. Coburn, S. G. Massry, and A. W. Norman, 1,25 dihydroxy-vitamin D3 in normal man and patients with renal failure, Ann. Intern. Med. 80, 161–168 (1974).

    CAS  Google Scholar 

  61. A. W. Norman and H. Henry, 1,25 dihydroxycholecalciferol. A hormonally active form of vitamin D3, Recent Prog. Horm. Res. 30, 431–480 (1974).

    CAS  Google Scholar 

  62. R. G. Wong, J. F. Myrtle, H. C. Tai, and A. W. Norman, Studies on calciferol metabolism. V. The occurence and biological activity of 1,25 dihydroxy-vitamin D3 in bone, J. Biol. Chem. 247, 5728–5735(1972).

    CAS  Google Scholar 

  63. A. S. Brickman, J. W. Coburn, and A. W. Norman, Action of 1,25 dihydroxycholecalciferol, a potent, kidney-produced metabolite of vitamin D3, in uremic man, N Engl. J. Med. 287, 891–895(1972).

    Article  CAS  Google Scholar 

  64. Y. Tanaka and H. F. De Luca, Stimulation of 24–25 dihydroxy-vitamin D3 production by 1,25 dihydroxy-vitamin D3, Science 183, 1198–1200 (1974).

    Article  CAS  Google Scholar 

  65. A. W. Norman, The hormone like action of 1,25-(OH)2-cholecalciferol (a metabolite of the fat-soluble vitamin D) in the intestine, Vitam. Horm. 32, 325–384 (1974).

    Article  CAS  Google Scholar 

  66. M. Garabedian, M. F. Holick, H. F. De Luca and I. T. Boyle, Control of 25 hy-droxycholecalciferol metabolism by the parathyroid glands, Proc. Nat. Acad. Sci. U.S.A. 69, 1673–1676(1972).

    Article  CAS  Google Scholar 

  67. D. R. Fraser and E. Kodicek, Regulation of 25 hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone, Nature (London), New Biol. 241, 163–166 (1973).

    CAS  Google Scholar 

  68. M. F. Holick, A. Kleiner-Bossaller, H. K. Schnoes, P. M. Kasten, I. T. Boyle, and H. F. De Luca, 1,24,25-Trihydroxy vitamin D3: A metabolite of vitamin D3 effective on intestine, J. Biol. Chem. 248, 6691–6696 (1973).

    CAS  Google Scholar 

  69. A. Kleiner-Bossaller and H. F. De Luca, Formation of 1,24,25-trihydroxy vitamin D3 from 1,25-dihydroxy vitamin D3, Bioch. Biophys. Acta 338, 489–495 (1974).

    Article  CAS  Google Scholar 

  70. J. L. Omdahl and H. F. De Luca, Strontium induced rickets: Metabolic basis, Science 174, 949–951 (1971).

    Article  CAS  Google Scholar 

  71. J. L. Omdahl and H. F. De Luca, Rachitogenic activity of dietary strontium. I. Inhibition of intestinal calcium absorption and 1,25-dihydroxycholecalciferol synthesis, J. Biol. Chem. 247, 5520–5525 (1972).

    CAS  Google Scholar 

  72. D. L. Miller and H. P. Schedi, Effects of experimental diabetes on intestinal strontium absorption in the rat, Proc. Soc. Exp. Biol. Med. 152, 589–592 (1976).

    CAS  Google Scholar 

  73. T. E. F. Carr, An attempt to quantitate the short-term movement of strontium in the human adult, in Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 139–148, Academic Press, London and New York (1967).

    Google Scholar 

  74. S. H. Cohn and E. A. Gumano, Kinetics of strontium and calcium skeletal metabolism in the rat, Proc. Soc. Exp. Biol. Med. 126, 79–83 (1967).

    Google Scholar 

  75. E. Eisenberg and G. S. Gordan, Skeletal dynamics in man measured by non radioactive strontium, J. Clin. Invest. 40, 1809–1825(1961).

    Article  CAS  Google Scholar 

  76. J. Rundo, Kinetics of strontium-85 deposition in the skeleton during chronic exposure, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 131–138, Academic Press, London and New York (1966).

    Google Scholar 

  77. E. Lioyd, Relative binding of strontium and calcium in protein and non protein fractions of serum in the rabbit, Nature (London) 217, 355–356 (1968).

    Article  Google Scholar 

  78. J. Samachson and H. Lederer, Comparative ultrafiltration of calcium and strontium in serum, Proc. Soc. Exp. Biol Med. 98, 867–870 (1958).

    CAS  Google Scholar 

  79. J. Szymendera and S. Madajewicz, Comparative ultrafiltrability of calcium and strontium in human plasma, Nature (London) 217, 968–970 (1968).

    Article  CAS  Google Scholar 

  80. N. El Solh, F. Rousselet, and M. L. Girard, A study on protein-strontium bonds, Second International Conference on Strontium Metabolism, Glasgow—Strontian, August 16–19, pp. 255–272(1972).

    Google Scholar 

  81. G. E. Harrison, E. Lumsden, W. H. A. Raymond and A. Sutton, On the mechanisms of skeletal fixation of strontium (Part I.), Arch. Biochem. Biophys. 80, 97–105 (1959).

    Article  CAS  Google Scholar 

  82. K. Krawieltzki, Aufstellung eines Multikompartmentsystems für den Stoffwechsel der Bone-seeking-Elemente, Arch. Tierernahr. 18, 358–377(1968).

    Google Scholar 

  83. W. F. Neuman, R. Bjornerstedt, and B. J. Mulryan, Synthetic hydroxyapatite crystals. II. Aging and strontium incorporation, Arch. Biochem. Biophys. 101, 215–224 (1963).

    Article  CAS  Google Scholar 

  84. N. S. McDonald, F. Ezmirlian, P. Spain, and C. McArthur, The ultimate site of skeletal deposition of strontium and lead, J. Biol. Chem. 189, 387–399 (1951).

    Google Scholar 

  85. W. F. Neman and M. W. Neuman, Energing concepts of the structure and metabolic functions of bone, Am. J. Med. 22, 123–131 (1957).

    Article  Google Scholar 

  86. W. F. Neman and M. W. Neuman, The nature of the mineral phase of bone, Chem. Rev. 53, 1–45(1953).

    Article  Google Scholar 

  87. M. R. Haussler, Vitamin D: Mode of action and biomedical applications, Nutr. Rev. 32, 257–266(1974).

    Article  CAS  Google Scholar 

  88. R. A. Corradino, Embryonic chick intestine in organ culture. A unique system for the study of the intestinal calcium absorptive mechanism, J. Cell Biol. 58, 64–78 (1973).

    Article  CAS  Google Scholar 

  89. J. S. Emtage, D. E. M. Lawson, and E. Kodicek, Vitamin D induced synthesis of m RNA for calcium binding protein, Nature (London) 246, 100–101 (1973).

    Article  CAS  Google Scholar 

  90. L. Miravet, M. L. Queille, M. Carre, P. Bordier, and J. Redel, Les metabolites de la vitamine D: leur action sur Tos des rats carrences en vitamine D, Ann. Biol. Anim. Biochem. Biophys. 181, 187–193(1978).

    Article  Google Scholar 

  91. N. Sirgente and M. L’Heureux, In vitro biosynthesis of calcitonin, Proc. Soc. Exp. Biol. Med. 136, 80–84(1971).

    Google Scholar 

  92. R. Buckle, The regulation of calcium metabolism, Proc. R. Soc. Med. 63 (9), 871–875 (1970).

    CAS  Google Scholar 

  93. C. C. Capen, Fine structural alterations of parathyroid glands in response to experimental and spontaneous changes of calcium in extra cellular fluids, Am. J. Med. 50, 598–611 (1971).

    Article  CAS  Google Scholar 

  94. S. B. Oldham, J. A. Fischer, G. W. Sizemore, and C. D. Arnaud, Calcium dependent enzymatic conversion of glandular to secreted parathyroid hormone, in Calcium Parathyroid Hormone and the Calcitonins (R. V. Talmage and P. L. Munson, eds.), pp. 213–218, Excerpta Medica, Amsterdam (1972).

    Google Scholar 

  95. L. M. Sherwood, M. Abe, J. S. Rodman, W. B. Lundberg, and J. H. Targovnik, Jr., Parathyroid hormone: Synthesis, storage and secretion, in Calcium, Parathyroid Hormone and the Calcitonins (R. V. Talmage and P. L. Munson, eds.), pp. 183–196, Excerpta Medica, Amsterdam (1972).

    Google Scholar 

  96. J. Escanero, M. Carre, and L. Miravet, Effets des différents metabolites de la vitamine D3 et de la concentration calcique sur l’absorption intestinale du strontium, C. R. Seances Soc. Biol. 170, 47–53(1976).

    CAS  Google Scholar 

  97. H. Spencer, J. Samachson, B. Kabakow, and D. Laszlo, Factors modifying radiostrontium excretion in man, Clin. Sci. 17, 291–301 (1958).

    CAS  Google Scholar 

  98. H. Spencer, J. Samachson, E. P. Hardy, and J. Rivera, Effect of orally and intravenously administered stable strontium on90Sr metabolism in man, Radiat. Res. 51, 190–203 (1972).

    Article  CAS  Google Scholar 

  99. H. Spencer, M. Brothers, E. Berger, H. E. Hart, and D. Laszlo, Strontium-85 metabolism in man and effect of calcium on strontium excretion, Proc. Soc. Exp. Biol. Med. 91, 155–157 (1956).

    CAS  Google Scholar 

  100. M. Walser, Calcium clearance as a function of sodium clearance in the dog, Am. J. Physiol. 200, 1099–1104(1961).

    CAS  Google Scholar 

  101. L. Miravet, J. Redel, M. Carre, M. L. Queille, and P. Bordier, The biological activity of synthetic 25,26-dihydroxycholecalciferol and 24,25-dihydroxycholecalciferol in vitamin D-deficient rats, Calcif. J. Tissue Res. 21, 145–152 (1976).

    Article  CAS  Google Scholar 

  102. E. Shorr and A. C. Carter, The value of strontium as an adjuvant to calcium in the remineralization of the skeleton in osteoporosis in man, in Metabolic Interrelations: Transactions of the Second Conference (E. C. Reifenstein, ed.), pp. 144–154, Josiah Macy, Jr., Foundation, New York (1950).

    Google Scholar 

  103. E. Shorr and A. C. Carter, The usefulness of strontium as an adjuvant to calcium in the remineralisation of the skeleton in man, Bull. Hosp. Jt. Dis. 13, 59 (1952).

    CAS  Google Scholar 

  104. F. E. McCaslin and J. M. Janes, The effect of strontium lactate in the treatment of osteoporosis, Proc. Mayo Clin. 34, 329–334(1959).

    Google Scholar 

  105. A. Ryckewaert, D. Kuntz, J. P. Teyssedou, S. Tun Chot, P. Bordier, and D. Hiocco, Etude histologique de Tos chez des sujets osteoporotiques en traitement prolongé par le fluorure de sodium. Rev. Rhumatisme 39(10), 627–634 (1972).

    Google Scholar 

  106. A. Ryckewaert, V. Lemaire, and M. Tubiana, Traitements médicamenteux non hormonaux de la maladie de Paget. Rev. Rhumatisme 42(11), 693–698 (1975).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Plenum Press, New York

About this chapter

Cite this chapter

El Solh, N., Rousselet, F. (1981). Effects of Stable Strontium Administration on Calcium Metabolism with Particular Reference to Low-Calcium Diet. In: Skoryna, S.C. (eds) Handbook of Stable Strontium. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3698-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3698-3_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3700-3

  • Online ISBN: 978-1-4684-3698-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics