Content of Stable Strontium in Man and Animal Biota

  • Harold L. Rosenthal


Until the atomic era Sr2+ was of limited biological interest, being used primarily to remove traces of gas from vacuum tubes and to impart red color for tracer bullets, signal rockets, flares, and fireworks (1). To a limited degree Sr2+ compounds are also used in ceramics, drugs, greases, and special iron compositions. In 1968 a mere 12,500 tons of Sr2+ were produced in the free world (2). The advent of radioactive Sr2+, a fission product of nuclear reaction, presented a radiological hazard to the biosphere because of its long half-life (28 years), its affinity for deposition in bone, and its similarity to Ca2+. The voluminous literature concerning radiological effects of90 Sr, its distribution in the biosphere and transport through the food chain, and the dynamics of Sr2+ metabolism in man, lower animals, and plants significantly contributed to our knowledge of the naturally occurring stable element, although their effects have nothing in common except affinity to bone.


Fresh Water Fish Sweet Water Animal Biota Rabbit Chow Average Ocean 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. A. P. Wyllie, The strontian mines, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 13–15, Academic Press, London (1967).Google Scholar
  2. 2.
    Mineral Facts and Problems, U.S. Department of Interior, Bureau of Mines, U.S. Government Printing Office, Washington (1970).Google Scholar
  3. 3.
    B. Mason, Principles of Geochemistry, 2nd ed., John Wiley, New York (1958).Google Scholar
  4. 4.
    H. J. M. Bowen, Trace Elements in Biochemistry, Academic Press, London (1966).Google Scholar
  5. 5.
    H. L. Rosenthal, M. M. Eves, and O. A. Cochran, Common strontium of mineralized tissues from marine and sweet water animals. Comp. Biochem. Physiol. 32, 445–450 (1970).CrossRefGoogle Scholar
  6. 6.
    H. A. Schroeder, I. H. Tipton, and A. P. Nason, Trace metals in man: strontium and barium. J. Chron. Dis 25, 491–517 (1972).CrossRefGoogle Scholar
  7. 7.
    K. K. Turekian, R. C. Harriss, and D. G. Johnson, The variation of Sr, CI, Na, Ca, Sr, Ba, Co, and Ag in Neuse River, North Carolina. Limnol. Oceanogr. 12, 702–706 (1967).CrossRefGoogle Scholar
  8. 8.
    C. M. Durfor and E. Becher, Public Water Supplies of 100 largest cities in the United States, Geological Survey Water Supply Paper 1812, U.S. Dept. Interior, U.S. Government Printing Office, Washington (1963).Google Scholar
  9. 9.
    G. Faure, J. H. Crocket, and P. M. Hurley, Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and the Great Lakes. Geochim. Cosmochim. Acta 31:451–461 (1967).CrossRefGoogle Scholar
  10. 10.
    I. L. Ophel and J. M. Judd, Skeletal distribution of strontium and calcium and strontium: calcium ratios in several species of fish, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.) pp. 103–109, Academic Press, London (1967).lGoogle Scholar
  11. 11.
    H. U. Sverdrup, M. W. Johnson, and R. H. Fleming, The Oceans, Prentice Hall, New York (1942).Google Scholar
  12. 12.
    W. Slavin, W. Atomic Absorption Spectroscopy, Wiley Interscience, New York (1968).Google Scholar
  13. 13.
    T. J. Chow and T. G. Thompson, Flame photometric determination of strontium in sea water. Analyt. Chem. 27, 18–21 (1955).CrossRefGoogle Scholar
  14. 14.
    E. E. Angino, G. K. Billings, and N. Anderson, Observed variations in the strontium concentration of sea water. Chem. Geol. 1, 145–153 (1966).CrossRefGoogle Scholar
  15. 15.
    F. T. Mackenzie, Strontium content and variable strontium-chlorinity relationship of Sargasso Sea Water. Science 146, 517–518 (1964).CrossRefGoogle Scholar
  16. 16.
    N. R. Andersen and D. N. Hume, The strontium and barium content of sea water, in: Trace Inorganics In Water, Advances in Chemistry, Series 73 (J. F. Gould, ed.), pp. 296–307, American Chemical Society, Washington (1967).Google Scholar
  17. 17.
    H. L. Rosenthal, O. A. Cochran, and M. M. Eves, Strontium content of mammalian bone, diet and excreta. Environ. Resch. 5, 182–191 (1972).CrossRefGoogle Scholar
  18. 18.
    A. Gormican, Inorganic Elements in Foods Used in Hospital Menus. J. Amer. Diet. Ass. 56, 397–403(1970).Google Scholar
  19. 19.
    F. J. Bryant and J. F. Loutit, The entry of strontium-90 into human bone. Proc. Royal Soc. Ser. B 159,449–465(1964).CrossRefGoogle Scholar
  20. 20.
    G. L. Rehnberg, A. B. Strong, C. R. Porter, and M. W. Carter, Levels of stable strontium in milk and the total diet. Environ. Sci. Tech. 3, 171–173 (1969).CrossRefGoogle Scholar
  21. 21.
    J. Rivera, Fallout Program Quarterly Summary Report HASL-146, New York, U.S. Atomic Energy Commission Health and Safety Lab (1964).Google Scholar
  22. 22.
    I. H. Tipton, P. L. Stewart, and P. G. Martin, Trace elements in diets and excreta. Health Phys. 12, 1683–1689(1966).CrossRefGoogle Scholar
  23. 23.
    V. A. Knizhnikov and A. N. Marei, Strontium metabolism in man, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 71–82, Academic Press, London (1967).Google Scholar
  24. 24.
    L. T. Steadman, F. Brudevold, and F. A. Smith, Distribution of strontium in teeth from different geographic areas. J. Amer. Dent. Assoc. 57:340–344(1958).Google Scholar
  25. 25.
    V. R. Bohman, C. Blincoe, M. A. Wade, A. L. Lesperance, and E. L. Fountain, Accumulation of strontium in bovine bones. J. Agri. Food Chem. 14, 413–415 (1966).CrossRefGoogle Scholar
  26. 26.
    G. E. Harrison, A. Sutton, H. Shepherd, and E. M. Widdowson, Strontium balance in breast-fed babies. Brit. J. Nutr. 19, 111–117 (1965).CrossRefGoogle Scholar
  27. 27.
    W. L. Templeton and V. M. Brown, The relationship between the concentrations of calcium, strontium and strontium-90 in wild trout, Salmo trutta L. and the concentrations of the stable elements in some waters of the United Kingdom and the implications in radiological health studies. Inter. J. Air Water Pollut. 8, 49–75 (1964).Google Scholar
  28. 28.
    T. E. Denton and J. C. O’Kelley, Algae as nutrient material for studying Ca-Sr relationship in Heterotrophic organisms. Nature (London) 227, 1161–1163 (1970).CrossRefGoogle Scholar
  29. 29.
    E. Lloyd, A comparison of the metabolism of calcium and strontium in rabbit and man, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Loutit, and J. H. Martin, eds.), pp. 167–173, Academic Press, London (1967).Google Scholar
  30. 30.
    G. C. Fariss, Factors influencing the accumulation of strontium-90, stable strontium and calcium in mule deer, U. S. National Technical Information Service Paper No. C00–1156–26 (1967).Google Scholar
  31. 31.
    R. M. Hodges, N. S. MacDonald, R. Nusbaum, R. Stearns, F. Ezmirlian, P. Spain, and C. McArthur, The strontium content of human bones. J. Biol. Chem. 185, 519–524 (1950).Google Scholar
  32. 32.
    W. M. B. Roberts, Estimation of strontium in animal bone using x-ray fluorescence analysis. Nature (London) 183, 887–888 (1959).CrossRefGoogle Scholar
  33. 33.
    E. M. Sowden and S. R. Stitch, Trace elements in human tissue. 2. Estimation of the concentrations of stable strontium and barium in human bone. Biochem. J. 67, 104–109 (1957).Google Scholar
  34. 34.
    K. K. Turekian and J. L. Kulp, Strontium content of human bones. Science 124, 405–407 (1956).CrossRefGoogle Scholar
  35. 35.
    D. L. Thurber, J. L. Kulp, E. Hodges, P. M. Gast, and J. M. Wampler, Common strontium content of the human skeleton. Science 128, 256–257 (1958).CrossRefGoogle Scholar
  36. 36.
    M. M. Golutvina, A. Kuznetzov, N. Ya. Novikova, and Ya. M. Nikolaer, Determination of strontium in human bone. Lab. Delo. (Russ.) 11, 660–670 (1967).Google Scholar
  37. 37.
    I. Rytomaa, L. Kolehmainen, and H. Tuompo, Strontium content of deciduous teeth in northern and southern Finland. Acta. Odont. Scand. 33, 115–118 (1975).CrossRefGoogle Scholar
  38. 38.
    D. H. Retief, P. E. Cleaton-Jones, J. Turkstra, and W. J. deWet, The quantitative analysis of Sr, Au, Br, Mn and Na in normal human enamel and dentine by neutron activation and high resolution gamma spectrometry. J. Dent. Assoc. S. Afr. 26, 63–69 (1970).Google Scholar
  39. 39.
    F. L. Losee, M. E. J. Curzon, and M. F. Little, Trace element concentrations in human enamel. Arch. Oral. Biol. 19, 467–470(1974).CrossRefGoogle Scholar
  40. 40.
    N. Wolf, I. Gedalia, S. Yariv, and H. Zuckermann, The strontium content of bones and teeth of human faetuses. Arch. Oral Biol. 17, 93–109 (1973).Google Scholar
  41. 41.
    N. Miyao, Strontium metabolism following strontium-calcium discrimination factor in domestic animals. Nippon Juigaku Zasshi 22, 273–286 (1960).CrossRefGoogle Scholar
  42. 42.
    N. B. Price and A. Hallam, A Variation of Sr content within shells ofrecent Nautilus and Sepia. Nature (London) 215, 1272–1274 (1967).CrossRefGoogle Scholar
  43. 43.
    R. W. G. Wychoff and A. R. Doberenz, The strontium content of fossil teeth and bone. Geochim. Acta 32, 109–115(1968).CrossRefGoogle Scholar
  44. 44.
    H. A. Lowenstam, in: The Earth Sciences: Problems and Progress in Current Research, No. 137 (T. W. Donnlly, ed.), University Chicago Press (1963).Google Scholar
  45. 45.
    A. Hallam and N. B. Price, Strontium contents of recent and fossil aragonitic cephalopod shells. Nature (London) 212, 25–27 (1966).CrossRefGoogle Scholar
  46. 46.
    P. C. Ragland, O. H. Pilkey, and B. W. Blackwelder, Comparison of the Sr/ Ca ratio of fossil and recent mollusc shells. Nature (London) 224, 1223–1224 (1969).CrossRefGoogle Scholar
  47. 47.
    A. S. Posner, Crystal chemistry of bone mineral. Physiol. Rev. 49, 760–792 (1969).Google Scholar
  48. 48.
    I. H. Tipton and M. J. Cook, Trace elements in human tissues. II. Adult subjects from the United States. Health Phys. 9, 103–145 (1963).CrossRefGoogle Scholar
  49. 49.
    W. E. C. Wacher and B. L. Vallee, Nucleic acids and metals. I. Chromium, manganese, nickel, iron and other metals in ribonucleic acid from diverse biological sources. J. Biol. Chem. 234, 3257–3262(1959).Google Scholar
  50. 50.
    H. L. Rosenthal and O. A. Cochran, Binding of85 Sr to homogenate and subcellular fractions of rabbit tissues. Proc. Soc. Exper. Biol. Med. 141, 850–856 (1972).Google Scholar
  51. 51.
    H. L. Rosenthal, Accumulation of strontium-90 and Ca-45 by fresh water fishes. Proc. Soc. Exp. Biol. Med. 104, 88–91 (1960).Google Scholar
  52. 52.
    H. Boroughs, S. J. Townsley, and R. W. Hiatt, The metabolism of radionuclides by marine organisms. III. The uptake of calcium-45 in solution by marine fish. Limnol. Oceanogr. 2, 28–32 (1957).CrossRefGoogle Scholar
  53. 53.
    S. A. Lough, J. Rivera, and C. L. Cornar, Retention of strontium, calcium and phosphorus in human infants. Proc. Soc. Exp. Biol. Med. 112, 631–636 (1963).Google Scholar
  54. 54.
    H. L. Rosenthal, J. T. Bird, and J. E. Gilster, Strontium-90 content of first bicuspids. Nature (London) 210, 210–212 (1966).CrossRefGoogle Scholar
  55. 55.
    C. L. Cornar, R. H. Wasserman, and M. M. Nold, Strontium-calcium discrimination factors in the rat. Proc. Soc. Exper. Biol. Med. 92, 859–863 (1956).Google Scholar
  56. 56.
    C. L. Cornar and F. Bronner, Mineral Metabolism, Vol. IIA Academic Press, New York (1964).Google Scholar
  57. 57.
    H. Spencer, M. Li, J. Samachson, and D. Lazio, Metabolism of strontium-85 and calcium-45 in man. Metabolism 9, 916–925 (1960).Google Scholar
  58. 58.
    C. L. Cornar, Some principles of strontium metabolism: implications, applications, limitations, in: Strontium Metabolism (J. M. A. Lenihan, J. F. Noutit, and J. F. Martin, eds.), pp. 17–31, Academic Press, London (1967).Google Scholar
  59. 59.
    M. Walser and B. H. B. Robinson, Renal excretion and tubular reabsorption of calcium and strontium, in: The Transfer of Calcium and Strontium Across Biological Membranes (R. H. Wasserman, ed.), pp. 305–326, Academic Press, New York (1963).Google Scholar
  60. 60.
    H. L. Rosenthal, Uptake, turnover and transport of bone seeking elements in fishes. Ann. N. Y. Acad. Sci. 109, 278–293 (1963).CrossRefGoogle Scholar
  61. 61.
    H. L. Rosenthal, The metabolism of strontium-90 and calcium-45 by Lebistes. Biol. Bull. 113, 442–450(1957).CrossRefGoogle Scholar
  62. 62.
    H. L. Rosenthal, Uptake and turnover of calcium-45 by the guppy, Science 124, 571–574(1956).CrossRefGoogle Scholar
  63. 63.
    H. L. Rosenthal, Uptake of calcium-45 and strontium-90 from water by fresh-water fishes. Science 126, 599–700(1957).CrossRefGoogle Scholar
  64. 64.
    E. Storey, Calcium and strontium changes in bone associated with continuous administration of stable strontium to rats. Arch. Biochem. Biophys. 103, 575–581 (1968).CrossRefGoogle Scholar
  65. 65.
    C. W. Weber, A. R. Doberenz, and B. L. Reid, Strontium metabolism in mature hens and growing embryos. Poultry Sc., 52, 1472–1473 (1973).Google Scholar
  66. 66.
    N. S. MacDonald, F. Ezmirlian, P. Spain, and C. McArthur, The ultimate site of skeletal deposition of strontium and lead. J. Biol. Chem. 189, 387–399 (1951).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Harold L. Rosenthal
    • 1
  1. 1.Washington University School of Dental MedicineSt. LouisUSA

Personalised recommendations