Biogeochemistry of Strontium

  • Ananda Gunatilaka


Chemical analysis of calcified skeletons has expanded rapidly during the past twenty-five years, undoubtedly because of advances in the general field of geochemistry and the development of more precise analytical techniques. This review and the following discussion are confined to that part of the subject that is of direct importance to the geologists and biologists in various disciplines. The composition of the sediments accumulated on the ocean bottom and the physicochemical processes that are operational are largely controlled by the activities of the marine biomass. Biogenic sediments constitute a substantial portion of the total volume of recent marine sediments; this fact stresses the role played by biochemical mechanisms in sediment generation.


Carbonate Sediment Planktonic Foraminifera Diagenetic Alteration Skeletal Carbonate Benthonic Foraminifera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Taylor, W. J. Kennedy, and A. Hall, The shell structure and mineralogy of the Bivalvia, Bull. Brit. Mus. Zool. Suppl, 3, 1–125 (1969).Google Scholar
  2. 2.
    J. R. Dodd, Magnesium and strontium in calcareous skeletons, J. Palaeontol. 41, 1313–1329 (1967).Google Scholar
  3. 3.
    J. D. Milliman, Marine Carbonates, Springer-Verlag, New York, (1974).Google Scholar
  4. 4.
    H.A. Lowenstam, Biologic problems relating to the composition and diagenesis of sediments, in: The Earth Sciences Problems and Progress in Current Research, pp. 137–195, Chicago University Press, (1963).Google Scholar
  5. 5.
    H. T. Odum, The Biochemistry of Strontium (Ph.D. thesis): Yale University, New Haven, Conn., 1950.Google Scholar
  6. 6.
    H. T. Odum, Biogeochemical deposition of strontium, Inst. Mar. Sci. 4, 38–114 (1957).Google Scholar
  7. 7.
    T. G. Thompson and J. Chow, The strontium-calcium atom ratio in carbonate secreting marine organisms, Deep Sea Res. 3 (Suppl.), 20–39 (1955).Google Scholar
  8. 8.
    A. P. Vinogradov, The elemental chemical composition of marine organisms. Mem. 2, Sears Foundation Mar. Res. 647 pp. (1953).Google Scholar
  9. 9.
    R. Waskowiak, Geochemische Untersuchungen an rezenten Molluskenschalen marinen Herrkunft, Freiberger Forschungshefte, 136, 1–155 (1962).Google Scholar
  10. 10.
    D. L. Graf, Geochemistry of carbonate sediments and sedimentary carbonate rocks Part III, Ill. Geol. Sur. Circ. 701, 71 pp. (1960).Google Scholar
  11. 11.
    F. Leutwein and R. Waskowiak, Geochemische Untersuchungen an rezenten marinen Molluskenschalen. Neues Jahrb. Mineral. 99, 45–78 (1962).Google Scholar
  12. 12.
    K. Turekian and R. L. Armstrong, Magnesium, strontium and barium concentrations and calcite-aragonite ratios of some Recent molluscan shells, J. Mar. Res. 18, 133–151 (1960).Google Scholar
  13. 13.
    J. B. Rucker and J. W. Valentine, Salinity response of trace element concentration in Crassostrea virginica, Nature (London) 190, 1099–1100 (1961).CrossRefGoogle Scholar
  14. 14.
    O. H. Pilkey and H. G. Goodell, Trace elements in Recent mollusk shells, Limnol. Oceanogr. 8, 137–148 (1963).CrossRefGoogle Scholar
  15. 15.
    J. R. Dodd, Environmental control of strontium and magnesium in Mytilus, Geochim. Cosmochim. Acta 29, 385–398 (1965).CrossRefGoogle Scholar
  16. 16.
    O. H. Pilkey and R. C. Harris, The effect of intertidal environment on the composition of calcareous skeletal material, Limnol. Oceanogr. 11, 381–385 (1966).CrossRefGoogle Scholar
  17. 17.
    G. Faure, J. H. Crocket, and P. M. Hurley, Some aspects of the geochemistry of strontium and calcium in the Hudson Bay and Great Lakes, Geochim. Cosmochim. Acta 31, 451–461 (1967).CrossRefGoogle Scholar
  18. 18.
    R. C. Harris, Trace element distribution in molluscan skeletal material I. Magnesium, iron, manganese and strontium, Bull. Mar. Sci. 15, 265–273 (1965).Google Scholar
  19. 19.
    D. Krinsley, Magnesium, strontium and aragonite in the shells of certain littoral gastropods, J. Paleontol. 34, 744–755 (1960)Google Scholar
  20. 20.
    H. L. Rosenthal, Strontium in aquatic fish and shell fish, Comp. Biochem. Physiol. 32, 444–450. (1970).Google Scholar
  21. 21.
    H. A. Lowenstam, Systematic, paleoecologic and evolutionary aspects of skeletal building materials, Mus. Comp. Zool. Harvard Coll. Bull. 112, 287–317 (1954).Google Scholar
  22. 22.
    H. A. Lowenstam, Sr/ Ca ratio of skeletal aragonites from the Recent marine biota at Palau and from fossil gastropods, Isotopic and Cosmic Chemistry, pp. 113–132, North-Holland, Amsterdam (1964).Google Scholar
  23. 23.
    H. A. Lowenstam, Coexisting calcites and aragonites from skeletal carbonates of marine organisms and their strontium and magnesium contents. Recent researches in the field of hydrosphere, atmosphere and nuclear geochemistry, Maruzen Tokyo, 373–404 (1964).Google Scholar
  24. 24.
    H. A. Lowenstam, The Sea, Vol. V. Marine Chemistry (E. D. Goldberg, ed.), pp. 715–796, Wiley, New York, 1974.Google Scholar
  25. 25.
    H. A. Gunatiliaka, The chemical composition of some carbonate secreting marine organisms from Connemara, Ireland, Proc. Roy. Irish Acad. Ser. B 75, 543–556 (1975).Google Scholar
  26. 26.
    J. L. Kulp, K. Turekian, and D. W. Boyd, Strontium content of limestones and fossils, Geol. Soc. Am. Bull. 63, 701–716 (1952).CrossRefGoogle Scholar
  27. 27.
    A. Hallam and N. B. Price, Strontium contents of Recent and fossil aragonitic cephalopod shells, Nature (London) 212, 25–27 (1966).CrossRefGoogle Scholar
  28. 28.
    K. Turekian and R. L. Armstrong, Chemical and mineralogical composition of fossil molluscan shells from the Fox Hill Formation, South Dakota, Geol. Soc. Am. Bull. 72, 1817–1828 (1961).CrossRefGoogle Scholar
  29. 29.
    O. H. Pilkey and H. G. Goodell, Comparison of the composition of fossil and Recent mollusk shells, Geol. Soc. Am. Bull. 75, 217–228 (1964).CrossRefGoogle Scholar
  30. 30.
    V. A. Prokofvev, Spectrographs determination of trace elements in Paleozioc brachiopod shells, Geokhimiya 1, 75–81 (1964).Google Scholar
  31. 31.
    H. A. Lowenstam, Mineralogy, O18/O16 ratios, and strontium and magnesium contents of Recent and fossil brachiopoda and their bearing on the history of the oceans, Geol. 62, 241–260 (1961).Google Scholar
  32. 32.
    A. Lerman, Paleoecological problems of Mg and Sr in biogenic calcites in light of Recent thermodynamic data, Geochim. Cosmochim. Acta. 29, 977–1002 (1965).CrossRefGoogle Scholar
  33. 33.
    K. M. Wilbur, Shell formation and regeneration, in: Physiology of Mollusca (K. M. Wilbur and C. M. Yonge, eds.), pp. 243–282, Academic Press, New York (1964).Google Scholar
  34. 34.
    D. F. Travis, The comparative ultrastructure and organization of five calcified tissues, in: Biological Calcification (H. Schraer, ed.), pp. 203–312, North-Holland, Amsterdam, (19).Google Scholar
  35. 35.
    K. M. Towe and R. Cifelli, Wall ultrastructure in calcareous foraminifera: Crstallographic aspects and a model for calcification, J. Paleontol. 41, 742–762 (1967).Google Scholar
  36. 36.
    Y. Kitano and D. W. Hood, The influence of organic material on the polymorphic crystallization of calcium carbonate, Geochim. Cosmochim. Acta 29, 29–41 (1965).CrossRefGoogle Scholar
  37. 37.
    P. E. Hare, Amino-acids in the proteins from aragonite and calcite in the shells of Mytilus californianus, Science 139, 216–217 (1963).CrossRefGoogle Scholar
  38. 38.
    E. T. Degens, D. W. Spencer, and R. H. Parker, Paleobiochemistry of molluscan shell proteins Comp. Biochem. Physiol 20, 553–579 (1967).CrossRefGoogle Scholar
  39. 39.
    P. E. Hare and P. H. Abelson, Amino acid composition of some calcified proteins, Carnegie Inst. Wash. Yearb. 64, 223–232 (1965).Google Scholar
  40. 40.
    H. A. Lowenstam, Factors effecting the calcite: aragonite ratios of carbonate secreting marine organisms, J. Geol. 62, 284–322 (1954).CrossRefGoogle Scholar
  41. 41.
    J. R. Dodd, Paleoecological implications of shell mineralogy in two pelecypod species, J. Geol. 71, 1–11 (1963).CrossRefGoogle Scholar
  42. 42.
    J. R. Dodd, Environmental control of strontium and magnesium in Mytilus, Geochim. Cosmochim. Acta. 29, 385–398 (1965).CrossRefGoogle Scholar
  43. 43.
    D. Eisma, The influence of salinity on mollusk shell mineralogy: A discussion, J. Geol. 74, 89–94 (1966).CrossRefGoogle Scholar
  44. 44.
    J. D. Hudson, Carbonate minerals and sediments: Essay review. Geol. Mag. 112(5), 527–531 (1975).CrossRefGoogle Scholar
  45. 45.
    F. Lipmann, Sedimentary Carbonate MineralsMonograph Series of Theoretical and Experimental Studies, No. 6, Springer-Verlag, New York, (1973).Google Scholar
  46. 46.
    W. S. Fyfe and J. L. Bischoff, The calcite-aragonite problem, in: Dolomitization and Limestone Diagenesis. A Symposium (L. C. Pray and R. C. Murray, eds.) pp. 3–13 SEPM Spec. Publ. No. 13, (1965).Google Scholar
  47. 47.
    H. T. Odum, Notes on the strontium content of seawater, celestite radiolaria and strontianite snail shells, Science 114, 211–213 (1951).CrossRefGoogle Scholar
  48. 48.
    J. H. Schroeder, Experimental dissolution of calcium, magnesium and strontium from Recent biogenic carbonates: A model for diagenesis, Ph.D. thesis, George Washington Univ. (1968).Google Scholar
  49. 49.
    D. J. J. Kinsman, Interpretation of Sr2+ concentrations in carbonate minerals and rocks, J. Sed. Petrol. 39, 486–508 (1969).Google Scholar
  50. 50.
    D. J. J. Kinsman and H. D. Holland, The co-precipitation of cations with CaCO3IV. The coprecipitation of Sr2+ with aragonite between 16° and 96°C, Geochim. Cosmochim. Acta 33, 1–17 (1969).CrossRefGoogle Scholar
  51. 51.
    M. L. Keith, G. M. Anderson, and R. Eichler, Carbon and oxygen isotopic composition of mollusk shells from marine and freshwater environments, Geochim. Cosmochim. Acta. 28, 1757–1786 (1964).CrossRefGoogle Scholar
  52. 52.
    A. Hallam and N. B. Price, Environmental and biochemical control of strontium in shells of Cardium edule, Geochim. Cosmochim. Acta. 32, 319–328 (1968).CrossRefGoogle Scholar
  53. 53.
    H. A. Gunatilaka, Geochemistry and Diagenesis of Recent carbonate Sediments from Connemera, Western Ireland, (Ph.D. thesis), Reading University, U.K., 1972.Google Scholar
  54. 54.
    C. W. Correns, Einfuhrung in die Mineralogie. Springer, Berlin (1969).Google Scholar
  55. 55.
    G. Thompson and V. T. Bowen, Analysis of coccolith ooze from the deep tropical Atlantic, J. Mar. Res. 27, 32–38 (1969).Google Scholar
  56. 56.
    E. F. Swan, The meaning of strontium-calcium ratios, Deep-Sea Res. 4, 71 (1956).Google Scholar
  57. 57.
    D. J. Nelson, Strontium and calcium relationships in Clinch and Tennesse River mollusks, Radioecology 10, 204–211 (1963).Google Scholar
  58. 58.
    O. H. Pilkey and J. Hower, The effect of environment on the concentration of skeletal magnesium and strontium in Dendraster, J. Geol. 68, 203–216 (1960).CrossRefGoogle Scholar
  59. 59.
    G. Thompson and H. D. Livingston, Strontium and uranium concentrations in aragonite precipitated by some modern corals, Earth Planet. Sci. Lett. 8, 439–442 (1970).CrossRefGoogle Scholar
  60. 60.
    D. Eisma, W. E. Mook, and H. A. Das, Shell characteristics, isotopic composition and trace element contents of sone euryhaline molluscs as indicators of salinity, Paleogeog. Paleoclim. Paleoecol. 19(1), 39–62 (1976).CrossRefGoogle Scholar
  61. 61.
    K. Turekian, Paleoecological significance of the strontium-calcium ratio in fossils and sediments, Geol. Soc. Am. Bull. 66, 155–158 (1955).CrossRefGoogle Scholar
  62. 62.
    W. G. H. Maxwell, J. S. Jell, and R. G. McKellar, Differentiation of carbonate sediments in the Heron Island Reef, Jr. Sed. Petrol. 34, 294–308 (1964).Google Scholar
  63. 63.
    R. R. Matthews, Genesis of Recent lime mud in southern British Honduras, J. Sed. Petrol. 36, 428–454 (1966).Google Scholar
  64. 64.
    C. M. Hoskin, Coral pinnacle sedimentation, Alacran Reef Lagoon, Mexico, J. Sed. Petrol. 36, 1058–1074 (1966).Google Scholar
  65. 65.
    G. K. Billings and P. C. Ragland, Geochemistry and mineralogy of the Recent reef and lagoonal sediments, south of Belize (British Honduras, Chem. Geol. 3, 135–153 (1968).CrossRefGoogle Scholar
  66. 66.
    W. R. Maiklem, Carbonate sediments of the Capricorn Reef Complex, Great Barrier Reef, Australia, J. Sed. Petrol. 40, 55–80 (1970).Google Scholar
  67. 67.
    J. D. Gassaway, Mineral and chemical composition of sediments from the Straits of Florida, J. Sed. Petrol. 40, 1136–1146 (1970).Google Scholar
  68. 68.
    R. Till, The relationship between environment and sediment composition (geochemistry and petrology) in the Bimini Lagoon, Bahamas, J. Sed. Petrol. 40, 367–385 (1970).Google Scholar
  69. 69.
    H. A. Gunatilaka, Recent carbonate sedimentation in Connemara, western Ireland. Estuarine and Coastal Marine Science, 5, in press (1980).Google Scholar
  70. 70.
    R. G. C. Bathurst, Carbonate Sediments and Their Diagenesis, Elsevier, Amsterdam, (1970).Google Scholar
  71. 71.
    T. Alexandersson, Carbonate sementation in coralline algal nodules in the Skagerrak, North Sea: Biochemical precipitation in undersaturated waters, J. Sed. Petrol 44, 7–26 (1974).Google Scholar
  72. 72.
    H. A. Gunatilaka, Thallophyte boring and micritization within skeletal sands from Connemara, western Ireland, J. Sed. Petrol. 46, 548–554 (1976).Google Scholar
  73. 73.
    D. J. Shearman and N. H. Shirmohammadi, Distribution of strontium in dedolomites from the French Jura, Nature (London) 224, 606–608 (1969).CrossRefGoogle Scholar
  74. 74.
    C. D. Curtis and D. Krinsley, The detection of minor diagenetic alteration in shell material, Geochim. Cosmochim. Acta 29, 71–84 (1965).CrossRefGoogle Scholar
  75. 75.
    J. R. Dodd, Diagenetic stability of temperature sensitive skeletal properties in Mytilus from the Pleistocene of California, Geol. Soc. Am. Bull. 77, 1213–1224 (1966).CrossRefGoogle Scholar
  76. 76.
    J. R. Dodd, Minor diagenesis in skeletal carbonates, Proc. 11th Paci. Sci. Congr. 2, 7 (1966).Google Scholar
  77. 77.
    J. H. Schroeder and F. R. Siegel, Experimental dissolution of calcium, magnesium and strontium from Holocene biogenic carbonates: a model for diagenesis, Bull. Am. Assoc. Petrol. Geol. 53, 741 (abstr.) (1969).Google Scholar
  78. 78.
    H. J. M. Bowen, Strontium and barium in seawater and marine organisms, J. Mar. Biol. Assoc. U.K. 35, 451–460 (1956).CrossRefGoogle Scholar
  79. 79.
    K. Turekian, The marine geochemistry of strontium, Geochim. Cosmochim. Acta 28, 1479–1496 (1964).CrossRefGoogle Scholar
  80. 80.
    H. T. Odum, The stability of the world strontium cycle, Science 114, 407–411 (1951).CrossRefGoogle Scholar
  81. 81.
    H. D. Isenberg and L. S. Lavine, Comparative biology of mineral deposition, Curr. Pract. Orthopaed. Surg. 2, 117–219 (1964).Google Scholar
  82. 82.
    P. E. Gibbs and G. W. Bryan, A study of strontium, magnesium and calcium in the environment and exoskeleton of decapod crustaceans, with special reference to UCA Burgersi, J. Exp. Mar. Biol. Ecol. 9, 97–110 (1972).CrossRefGoogle Scholar
  83. 83.
    H. A. Lowenstam and D. McConell, Biologic precipitation of fluorite, Science 162, 1496–1498 (1968).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Ananda Gunatilaka
    • 1
  1. 1.Department of Geology, School of MinesUniversity of ZambiaLusakaZambia

Personalised recommendations