Inhibition of Dihydrostreptomycin Action against Mycobacterium smegmatis by Sodium, Magnesium, and Strontium Salts

  • William H. Beggs


Detailed knowledge of environmental factors affecting the bioactivity of antibiotics is needed for intelligent use of these agents in vivo and to aid in the selection or design of appropriate media and cultural conditions for in vitro susceptibility testing. The activity of aminoglycoside antibiotics is adversely affected by a host of environmental factors. For example, streptomycin action is influenced by organic culture medium constituents (1–3), pH (2–5), and anaerobic conditions (6). This chapter discusses specifically the effects of inorganic salts (i.e., the ionic environment) on aminoglycoside activity. Many independent studies, which will be summarized in the following section, have shown that inorganic salts can antagonize the bioactivity of aminoglycoside antibiotics against a variety of bacterial species. We recently demonstrated that salts can interfere with the bacteriostatic and bactericidal activities of dihydrostreptomycin against Mycobacterium smegmatis. SrCl2 was employed in a number of experiments designed to characterize the nature of this antagonism. These studies revealed several new and interesting effects of Sr2+ in a microbiological system. Since the reviews included in this volume are intended primarily for those interested in the behavior of Sr2+ ion on biological systems, a rather detailed consideration of our experiments with SrCh is presented.


Ionic Strength Divalent Cation Aminoglycoside Antibiotic Mycobacterium Smegmatis Magnesium Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Donovick and G. Rake, Influence of certain substances on the activity of streptomycin. I. Modifications of test medium, Proc. Soc. Exp. Biol. Med. 61, 224–227 (1946).Google Scholar
  2. 2.
    R. Donovick and G. Rake, Studies on some biological aspects of dihydrostreptomycin, J. Bacteriol. 53, 205–211 (1947).Google Scholar
  3. 3.
    S. A. Waksman and A. Schatz, Streptomycin—origin, nature, and properties, J. Am. Pharm. Assoc. 34, 273–291 (1945).Google Scholar
  4. 4.
    E. P. Abraham and E. S. Duthie, Effect of pH of the medium on activity of streptomycin and penicillin and other chemotherapeutic substances, Lancet 250, 455–459 (1946).CrossRefGoogle Scholar
  5. 5.
    W. B. Geiger, S. R. Green, and S. A. Waksman, The inactivation of streptomycin and its practical applications, Proc. Soc. Exp. Biol. Med. 61, 187–192(1946).Google Scholar
  6. 6.
    M. Kogut, J. W. Lightbown, and P. Isaacson, Streptomycin action and anaerobiosis, J. Gen. Microbiol. 39, 155–164 (1965).Google Scholar
  7. 7.
    M. Klein and L. J. Kimmelman, The role of spontaneous variants in the acquisition of streptomycin resistance by the shigellae, J. Bacteriol. 52, 471–479 (1946).Google Scholar
  8. 8.
    S. Berkman, R. J. Henry, and R. D. Housewright, Studies on streptomycin. I. Factors influencing the activity of streptomycin, J. Bacteriol. 53, 567–574 (1947).Google Scholar
  9. 9.
    S. R. Green and S. A. Waksman, Effect of glucose, peptone, and salts on streptomycin activity, Proc. Soc. Exp. Biol. Med. 67, 281–283 (1948).Google Scholar
  10. 10.
    R. Donovick, A. P. Bayan, P. Canales, et al., The influence of certain substances on the activity of streptomycin. III. Differential effects of various electrolytes on the action of streptomycin, J. Bacteriol. 56, 125–137(1948).Google Scholar
  11. 11.
    W. G. Rosen, Plant growth inhibition by streptomycin and its prevention by manganese, Proc. Soc. Exp. Biol. Med. 85, 385–388 (1954).Google Scholar
  12. 12.
    R. A. Gray, Inhibition of root growth by streptomycin and reversal of inhibition by manganese, Amer. J. Botany 42, 327–331 (1955).CrossRefGoogle Scholar
  13. 13.
    M.J. Griffin and J. R. Coley-Smith, Uptake of streptomycin by sporangia of Pseudoperonospora humuli and the inhibition of uptake by divalent metal cations, Trans. Brit. Mycol. Soc. 65, 265–278(1975).CrossRefGoogle Scholar
  14. 14.
    M. S. Simberkoff and J. J. Rahal, Parenteral aminoglycoside antibiotics—1977, Clinical use, N. Y. State J. Med. 77, 81–85 (1977).Google Scholar
  15. 15.
    A. A. Medeiros, T. F. O’Brien, W. E. C. Wacker, et al., Effect of salt concentration on the apparent in vitro susceptibility of Pseudomonas and other gram-negative bacilli to gentamicin, J. Infect. Dis. 124 (Suppl). S59–S64 (1971).CrossRefGoogle Scholar
  16. 16.
    W. H. Beggs and F. A. Andrews, Inhibition of dihydrostreptomycin action on Mycobacterium smegmatis by monovalent and divalent cation salts, Antimicrob. Agents Chemother. 7, 636–639 (1975).Google Scholar
  17. 17.
    W. E. Wick and J. S. Weiler, Nebramycin, a new broad-spectrum antibiotic complex IV. In vitro and in vivo laboratory evaluation, Antimicrob. Agents Chemother. 1967, 341–348 (1968).Google Scholar
  18. 18.
    S. D. Davis and A. Iannetta, Antagonistic effect of calcium in serum on the activity of tobramycin against Pseudomonas, Antimicrob. Agents Chemother. 1, 466–469 (1972).Google Scholar
  19. 19.
    S. D. Davis and A. Iannetta, Relative antagonism in vitro of calcium in serum to the bactericidal activities of gentamicin and tobramycin on Pseudomonas aeruginosa, Chemotherapy 19, 243–253(1973).CrossRefGoogle Scholar
  20. 20.
    L. B. Relier, F. D. Schoenknecht, M. A. Kenny, et al., Antibiotic susceptibility testing of Pseudomonas aeruginosa: selection of a control strain and criteria for magnesium and calcium content of media, J. Infect. Dis. 130, 454–463 (1974).CrossRefGoogle Scholar
  21. 21.
    G. Linzenmeier, P. Naumann, H. Neussel, et al., In vitro susceptibility of clinically important bacteria to amikacin: correlation of results of broth dilution and disk sensitivity tests and effect of medium composition, J. Infect. Dis. 134 (Suppl.), S262–S270 (1976).CrossRefGoogle Scholar
  22. 22.
    M. Rubenis, V. M. Kozij, and G. G. Jackson, Laboratory studies on gentamicin, Antimicrob. Agents Chemother. 1963, 153–156(1964).Google Scholar
  23. 23.
    F. Denis, M. Geslin, and Y. Boilleau, Influence du chlorure de sodium sur l’activité antibacterienne de la gentamycine, Comp. Rend. Soc. Biol. 164, 2093–2095 (1970).Google Scholar
  24. 24.
    F. Denis and M. M. Geslin, Étude in vitro de Finfluence du chlorure de sodium sur Factivite de cinq familles d’antibiotiques vis-à-vis des bacilles à gram négatif, Arch. Roum. Pathol. Exp. Microbiol. 33, 33–39 (1974).Google Scholar
  25. 25.
    J. A. Waitz and M. J. Weinstein, Recent microbiological studies with gentamicin, J. Infect. Dis. 119, 355–360(1969).CrossRefGoogle Scholar
  26. 26.
    L. P. Garrod and P. M. Waterworth, Effect of medium composition on the apparent sensitivity of Pseudomonas aeruginosa to gentamicin, J. Clin. Pathol. 22, 534–538 (1969).CrossRefGoogle Scholar
  27. 27.
    W. H. Traub, Susceptibility of Pseudomonas aeruginosa to gentamicin sulfate in vitro: Lack of correlation between disc diffusion and broth dilution sensitivity data, Appl. Microbiol. 20, 98–102(1970).Google Scholar
  28. 28.
    J. A. Washington, II, R. E. Ritts, Jr., and W. J. Martin, In vitro susceptibility of gram-negative bacilli to gentamicin, Mayo Clin. Proc. 45, 146–149 (1970).Google Scholar
  29. 29.
    D. N. Gilbert, E. Kutscher, P. Ireland, et al., Effect of the concentrations of magnesium and calcium on the in vitro susceptibility of Pseudomonas aeruginosa to gentamicin, J. Infect. Dis. 124 (Suppl), S37–S45 (1971).CrossRefGoogle Scholar
  30. 30.
    S. D. Davis and A. Iannetta, Influence of serum and calcium on the bactericidal activity of gentamicin and carbenicillin on Pseudomonas aeruginosa, Appl. Microbiol. 23, 775–779 (1972).Google Scholar
  31. 31.
    V.M. Zimelis and G. G. Jackson, Activity of aminoglycoside antibiotics against Pseudomonas aeruginosa: specificity and site of calcium and magnesium antagonism, J. Infect. Dis. 127, 663–669(1973).CrossRefGoogle Scholar
  32. 32.
    R. F. D’Amato, C.Thornsberry, C. N. Baker, et al., Effect of calcium and magnesium ions on the susceptibility of Pseudomonas species to tetracycline, gentamicin, polymyxin B, and carbenicillin, Antimicrob. Agents. Chemother. 7, 596–600 (1975).Google Scholar
  33. 33.
    R. J. Weinstein, L. S. Young, and W. L. Hewitt, Activity of three aminoglycosides and two penicillins against four species of gram-negative bacilli, Antimicrob. Agents Chemother. 7, 172–178(1975).Google Scholar
  34. 34.
    E. D. Weinberg, The mutual effects of antimicrobial compounds and metallic cations, Bacteriol. Rev. 21, 46–68(1957).Google Scholar
  35. 35.
    C. H. Ramirez-Ronda, R. K. Holmes, and J. P. Sanford, Effects of divalent cations on binding of aminoglycoside antibiotics to human serum proteins and to bacteria, Antimicrob. Agents Chemother. 7, 239–245 (1975).Google Scholar
  36. 36.
    C. Hurwitz and C. L. Rosano, Accumulation of label from C14-streptomycin by Escherichia coli, J. Bacteriol. 83, 1193–1201 (1962).Google Scholar
  37. 37.
    C. Hurwitz and C. L. Rosano, Chloramphenicol-sensitive and insensitive phases of the lethal action of streptomycin, J. Bacteriol. 83, 1202–1209(1962).Google Scholar
  38. 38.
    J. Mager, M. Benedict, and M. Artman, A common site of action for polyamines and streptomycin, Biochim. Biophys. Acta 62, 202–204 (1962).CrossRefGoogle Scholar
  39. 39.
    P. D. Bragg and W. J. Polglase, Action of dihydrostreptomycin and antagonism by cations, J. Bacteriol. 85, 590–594(1963).Google Scholar
  40. 40.
    F. N. Chang and J. G. Flaks, Binding of dihydrostreptomycin to Escherichia coli ribosomes: characteristics and equilibrium of the reaction, Antimicrob. Agents Chemother. 2, 294–307 (1972).Google Scholar
  41. 41.
    W. H. Beggs and F. A. Andrews, Role of ionic strength in salt antagonism of aminoglycoside action on Escherichia coli and Pseudomonas aeruginosa, J. Infect. Dis. 134, 500–504 (1976).CrossRefGoogle Scholar
  42. 42.
    S. Berkman, R. J. Henry, R. D. Housewright, et al., Streptomycin. IV. Adsorption of streptomycin by susceptible and resistant bacteria, Proc. Soc. Exp. Biol. Med. 68, 65–70 (1948).Google Scholar
  43. 43.
    P. H. Plotz, D. T. Dubin, and B. D. Davis, Influence of salts on the uptake of streptomycin by Escherichia coli, Nature (London) 191, 1324–1325 (1961).Google Scholar
  44. 44.
    D. Pramer, Absorption of antibiotics by plant cells. II. Streptomycin, Arch. Biochem. Biophys. 62,265–273(1956).CrossRefGoogle Scholar
  45. 45.
    W. H. Beggs and N. E. Williams, Protection of Mycobacterium smegmatis from ethambutol and streptomycin inhibition by MgSO4 and polyamines, Infect. Immun. 3, 496–497 (1971).Google Scholar
  46. 46.
    W. H. Beggs and F. A. Andrews, Inhibition of dihydrostreptomycin binding to Mycobacterium smegmatis by monovalent and divalent cation salts, Antimicrob. Agents Chemother. 9, 393–396 (1976).Google Scholar
  47. 47.
    Q. R. Bartz, J. Controulis, H. M. Crooks, Jr., et al., Dihydrostreptomycin, J. Am. Chem. Soc. 68, 2163–2166(1946).CrossRefGoogle Scholar
  48. 48.
    G. Rake, F. E. Pansy, W. P. Jambor, et al., Further studies on the dihydrostreptomycins, Am. Rev. Tuberc. 58, 479–486(1948).Google Scholar
  49. 49.
    W. H. Beggs and F. A. Andrews, Nonspecificity in the divalent cation antagonism of dihydrostreptomycin action on Mycobacterium smegmatis, Res. Commun. Chem. Pathol. Pharmacol. 10, 185–188(1975).Google Scholar
  50. 50.
    W. H. Beggs and N. E. Williams, Streptomycin uptake by Mycobacterium tuberculosis, Appl. Microbiol. 21, 751–753 (1971).Google Scholar
  51. 51.
    N. Anand, B. D. Davis, and A. K. Armitage, Uptake of streptomycin by Escherichia coli, Nature (London) 185, 23–24 (1960).Google Scholar
  52. 52.
    D. T. Dubin, R. Hancock, and B. D. Davis, The sequence of some effects of streptomycin in Escherichia coli, Biochim. Biophys. Acta 74, 476–489 (1963).CrossRefGoogle Scholar
  53. 53.
    L. E. Bryan and H. M. VanDenElzen, Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa, Antimicrob. Agents Chemother. 9, 928–938(1976).Google Scholar
  54. 54.
    N. Tanaka, Aminoglycoside antibiotics, in: Antibiotics III, Mechanism of action of antimicrobial and antitumor agents (J. W. Corcoran and F. E. Hahn, eds.) pp. 340–364, Springer-Verlag, New York-Heidelberg-Berlin (1975).Google Scholar
  55. 55.
    D. Schlessinger and G. Medoff, Streptomycin, dihydrostreptomycin and the gentamicins, in: Antibiotics III, Mechanism of action of antimicrobial and antitumor agents (J. W. Corcoran and F. E. Hahn, eds.) pp. 535–550, Springer-Verlag, New York-Heidelberg-Berlin (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • William H. Beggs
    • 1
  1. 1.General Medical Research ServiceVeterans Administration Medical CenterMinneapolisUSA

Personalised recommendations