Calcium and Other Divalent Cations as Charge Carriers of the Slow Inward Current in Heart Muscle

  • M. Kohlhardt


It is a well-known fact that divalent cations play an important role in regulating cardiac function. Thus initiation and strength of contractile activity are basically dependent on the presence of free Ca2+ ions, whereby under experimental conditions Ca2+ ions can be substituted by Sr2+ ions. Apart from their effects on the contractile events, these divalent cations are intimately involved in the excitation process of the heart. As was evidenced by numerous electrophysiological studies, Ca2+, Sr2+, and Ba2+ ions serve as charge carriers of the transmembrane slow inward current occurring during excitation. These observations have added to the knowledge of the cardiac membrane and clarified the nature and features of the cationic movements underlying the cardiac action potential. Although the molecular basis of the regulation of transmembrane ionic movements is not known, the analysis of ionic currents has elucidated the mode of action of some cardioactive compounds and drugs either indirectly by studies of the action potential or directly in voltage clamp experiments. On the other hand, a closer insight into the process of excitation-contraction coupling was obtained.


Heart Muscle Excitation Process Cardiac Action Potential Voltage Clamp Experiment Slow Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. H. Draper and S. Weidmann, Cardiac resting and action potentials recorded with an electrode, J. Physiol 115, 74 (1951).Google Scholar
  2. 2.
    W. Trautwein, Electrophysiologic der Herzmuskelfaser, Ergebn. Physiol. 51, 131 (1961).Google Scholar
  3. 3.
    W. New and W. Trautwein, Inward membrane currents in mammalian myocardium. Pflügers Arch. 334, 1 (1972).CrossRefGoogle Scholar
  4. 4.
    J. Dudel and R. Rudel, Voltage and time dependence of excitatory sodiumcurrent in cooled sheep Purkinje fibres, Pflügers Arch. 315, 136 (1970).CrossRefGoogle Scholar
  5. 5.
    A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500 (1952).Google Scholar
  6. 6.
    H. G. Haas, R. Kern, H. M. Einwächter, and M. Tarr, Kinetics of Na inactivation in frog atria, Pflügers Arch. 323, 141 (1971).CrossRefGoogle Scholar
  7. 7.
    S. Weidmann, Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres, J. Physiol. 129, 568 (1955).Google Scholar
  8. 8.
    G. W. Beeler and H. Reuter, Voltafe clamp experiments on ventricular myocardial fibres, J. Physiol. 207, 165 (1970).Google Scholar
  9. 9.
    E. M. Vaughan Williams, The mode of action of quinidine on isolated rabbit atria interpreted from intracellular potential records, Br. J. Pharmacol. 13, 276 (1958).Google Scholar
  10. 10.
    B. F. Hoffman and P. Cranefield, Electrophysiology of the heart, McGraw-Hill, New York (1960).Google Scholar
  11. 11.
    H. Antoni and W. Delius, Nachweis von zwei Komponenten in der Anstiegsphase der Aktionspotentiale von Froschmyokardfasern, Pflügers Arch. 283, 187 (1965).CrossRefGoogle Scholar
  12. 12.
    G. H. Engstfeld, H. Antoni, and A. Fleckenstein, Die Restitution der Erregungsfortleitung und Kontraktionskraft des K+-gelähmten Frosc und Säugetiermyokards durch Adrenalin, Pflügers Arch. 273, 145 (1961).CrossRefGoogle Scholar
  13. 13.
    H. Reuter, The dependence of the slow inward current in Purkinje fibres on the extracellular calcium concentration, J. Physiol. 192, 479 (1967).Google Scholar
  14. 14.
    H. M. Einwachter, H. G. Haas, and R. Kern, Membrane current and contraction in frog atrial fibres, J. Physiol. 227, 141 (1972).Google Scholar
  15. 15.
    M. Goto, Y. Kimoto, and Y. Suetsugu, Membrane currents responsible for contraction and relaxation of the bullfrog ventricle, Jap. J. Physiol. 22, 315 (1972).CrossRefGoogle Scholar
  16. 16.
    M. Kohlhardt, B. Bauer, H. Krause, and A. Fleckenstein, Differentiation of the transmembrane Na and Ca channels in mammalian cardiac fibres by the use of specific inhibitors, Pflügers Arch. 335, 309(1972).Google Scholar
  17. 17.
    D. Mascher and K. Peper, Two components of inward current in myocardial muscle fibres, Pflügers Arch. 307, 190 (1969).CrossRefGoogle Scholar
  18. 18.
    R. Ochi, The slow inward current and the action of manganese ions in guinea-pigs myocardium, Pflügers Arch. 316, 81 (1970).CrossRefGoogle Scholar
  19. 19.
    H. Reuter and G. W. Beeler, Calcium current and activation of contraction in ventricular myocardial fibres, Science 163, 399 (1969).CrossRefGoogle Scholar
  20. 20.
    M. Vitek and W. Trautwein, Slow inward current and action potential in cardiac Purkinje fibres. The effect of Mn++-ions, Pflügers Arch. 323, 204 (1971).CrossRefGoogle Scholar
  21. 21.
    G. Vassort and O. Rougier, Membrane potential and slow inward current dependence of frog cardiac mechanical activity, Pflügers Arch. 331, 191 (1972).CrossRefGoogle Scholar
  22. 22.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, in: Progress in Biophysics and Molecular Biology, Vol 26, p. 3, Pergamon Press, Oxford and New York (1973).Google Scholar
  23. 23.
    W. Trautwein, T. F. McDomald, and O. Tripathi, Calcium conductance and tension in mammalian ventricular muscle, Pflügers Arch. 354, 55 (1975).CrossRefGoogle Scholar
  24. 24.
    G. W. Beeler and H. Reuter, Membrane calcium current in ventricular myocardial fibres, J. Physiol. 207, 191 (1970).Google Scholar
  25. 25.
    H. Reuter and H. Scholz, A study of the ion selectivity and the kinetic properties of the calcium dependent slow inward current in mammalian cardiac muscle, J. Physiol. 264, 17 (1977).Google Scholar
  26. 26.
    M. Kohlhardt, H. Krause, M. Kübier, and A. Herdey, Kinetics of inactivation and recovery of the slow inward current in the mammalian ventricular myocardium, Pflügers Arch. 355, 1 (1975).CrossRefGoogle Scholar
  27. 27.
    M. Kohlhardt, M. Kühler, and A. Herdey, Characteristics of the recovery process of the Ca membrane channel in myocardial fibres, Pflügers Arch. 347, R2 (1974).Google Scholar
  28. 28.
    M. Tarr, Two inward currents in frog atrial muscle, J. Gen. Physiol. 58, 523 (1971).CrossRefGoogle Scholar
  29. 29.
    D. Mascher, Electrical and mechanical responses from ventricular muscle fibres after inactivation of the sodium carrying system, Pflügers Arch. 317, 359 (1970).CrossRefGoogle Scholar
  30. 30.
    A. J. Pappano, Calcium-dependent action potentials produced by catecholamines in guinea pig atrial muscle fibres depolarized by potassium, Circ. Res. 27, 379 (1970).Google Scholar
  31. 31.
    A. Fleckenstein, H. Kammermeier, H. J. Döring, H. J. Freund, G. Grün, und A. Kienle, Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff-einsparenden Myokard-Effekten, Prenylamin und Iproveratril, Z. Kreislaufforsch. 56, 839 (1967).Google Scholar
  32. 32.
    A. Fleckenstein, H. Tritthart, B. Fleckenstein, A. Herbst, und G. Grün, Einen neue Gruppe kompetitiver Ca++-Antagonisten (Iproveratril, D 600, Prenylamin) mit starken Hemmeffekten auf die elektro mechanische Kopplung im Warmblüter-Myokard, Pflügers Arch. 307,35 (1969).Google Scholar
  33. 33.
    A. Fleckenstein, Specific inhibitors and promoters of calcium action in the excitation-contraction coupling of heart muscle and their role in the prevention of production of myocardial lesions, in: Calcium and the Heart, p. 135, Academic Press, London and New York, (1971).Google Scholar
  34. 34.
    A. Fleckenstein, H. J. Döring, und H. Kammermeier, Einfluss von Beta-Rezeptorenblockern und verwandten Substanzen auf Erregung, Kontraktion und Energiestoffwechsel der Myokard-faser, Klin. Wschr. 46, 343 (1968).CrossRefGoogle Scholar
  35. 35.
    R. S. Kass and R. W. Tsien, Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers, J. Gen. Physiol. 66, 169 (1975).CrossRefGoogle Scholar
  36. 36.
    M. Kohlhardt, B. Bauer, H. Krause, and A. Fleckenstein, Selective inhibition of the transmembrane Ca conductivity of mammalian myocardial fibres by Ni, Co and Mn ions, Pflügers Arch. 338, 115 (1973).CrossRefGoogle Scholar
  37. 37.
    O. Rougier, G. Vassort, D. Gamier, Y. M. Gargouil, and E. Coraboeuf, Existence and role of a slow inward current during the frog atrial action potential, PflUgers Arch. 308, 91 (1969).CrossRefGoogle Scholar
  38. 38.
    O. Rougier, D. Vassort, and R. Stampili, Voltage clamp experiments on frog atrial muscle fibers with the sucrose gap technique, Pflügers Arch. 301, 91 (1968).CrossRefGoogle Scholar
  39. 39.
    P. F. Cranefield, R. S. Aronson, and A. L. Wit, Effect of verapamil on the normal action potential and on a calcium-dependent slow response of canine cardiac Purkinje fibers, Circ. Res. 34, 204(1974).Google Scholar
  40. 40.
    K. Shigenobu, J. A. Schneider, and N. Sperelakis, Verapamil blockade of slow Na+ and Ca++ responses in myocardial cells, J. Pharmac. Exp. Ther. 190, 280 (1974).Google Scholar
  41. 41.
    H. R. Tritthart, R. Volkmann, R. Weiss, and A. Fleckenstein, Calcium-mediated action potentials in mammalian myocardium. Alteration of membrane response as induced by changes of Cae or by promoters and inhibitors of transmembrane Ca inflow, Arch. Exp. Path Pharmak. 280, 239(1973).CrossRefGoogle Scholar
  42. 42.
    H. Reuter, Strom-Spannungsbeziehungen von Purkin je-Fasern bei verschiedenen extracellularen Calcium-Konzentrationen und unter Adrenalineinwirkung, Pflügers Arch. 287,357 (1966).CrossRefGoogle Scholar
  43. 43.
    G. O. Vassort, O. Rougier, D. Garnier, M. P. Sauviat, E. Coraboeuf, and Y. M. Gargouil, Effects of adrenaline on membrane inward currents during the cardiac action potential, Plügers Arch. 309, 70(1969).CrossRefGoogle Scholar
  44. 44.
    R. W. Tsien, W. Giles, and P. Greengard, Cyclic AMP mediates the effect of adrenaline on cardiac Purkinje fibres, Nature New Biol. 240, 181 (1972).Google Scholar
  45. 45.
    M. Kohlhardt, M. Kübier, and E. Hansi, Ambigous effect of caffeine upon the transmembrane Ca current in mammalian ventricular myocardium, Experientia 30, 254 (1974).CrossRefGoogle Scholar
  46. 46.
    J. R. Blinks, C. B. Olson, B. R. Jewell, and P. Braveny, Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle, Circ. Res. 30, 367(1972).Google Scholar
  47. 47.
    M. Otsuka, Die Wirkung von Adrenalin auf Purkinje-Fasern von Saugetierherzen, Pfluger Arch. 266, 512(1958).CrossRefGoogle Scholar
  48. 48.
    R. G. Cateels, Effect of sodium-deficiency on the membrane activity of the frog’s heart, Arch. Int. Physiol. Biochim. 70, 599 (1962).CrossRefGoogle Scholar
  49. 49.
    W. Trautwein and R. F. Schmidt, Zur Membranwirkung des Adrenalins an der Herzmuskelfaser, Pflügers Arch. 271, 715 (1960).CrossRefGoogle Scholar
  50. 50.
    K. Shigenobu and N. Sperelakis, Calcium current channels induced by catecholamines in chick embryonic hearts whose fast sodium channel are blocked by tetrodotoxin or elevated potassium, Circ. Res. 31, 932(1972).Google Scholar
  51. 51.
    E. E. Carmeliet, Influence of lithium ions on the transmembrane potential and cation content of cardiac cells, J. Gen. Physiol. 47, 501 (1964).CrossRefGoogle Scholar
  52. 52.
    H. J. Freund, Die Beeinflussung der bioelektrischen und mechanische Aktivität des Säugetiermyo-kards bei stufenweisem Ersatz von extrazellulärem Na+ durch Li+, Pflügers Arch. 296, 234 (1967).CrossRefGoogle Scholar
  53. 53.
    J. Vereecke and E. Carmeliet, Sr action potentials in cardiac Purkinje fibres. 1. Evidence for a regenerative increase in Sr conductance, Pflügers Arch. 322, 60 (1971).CrossRefGoogle Scholar
  54. 54.
    M. Kohlhardt, H. P. Haastert, and H. Krause, Evidence of non-specificity of the Ca channel in mammalian myocardial fibre membranes. Substitution of Ca by Sr, Ba or Mg as charge carriers, Pflügers Arch. 342, 125 (1973).CrossRefGoogle Scholar
  55. 55.
    M. Kohlhardt, A. Herdey, and M. Kübier, Interchangeability of Ca ions and Sr ions as charge carriers of the slow inward current in mammalian myocardial fibres, Pflügers Arch. 344, 149 (1973).CrossRefGoogle Scholar
  56. 56.
    D. Hartmann und M. Reiter, Elektromechanische Koppelung durch Strontium, Arch. Exp. Path Pharmack. 251, 151 (1965).CrossRefGoogle Scholar
  57. 57.
    G. Isenberg, Is potassium conductance of cardiac Purkinje fibres controlled by Ca2+? Nature (London) 253, 273 (1975).CrossRefGoogle Scholar
  58. 58.
    J. M. Chesnais, E. Coraboeuf, M. P. Sauviat, and J. M. Vassas, Sensitivity to H, Li and Mg ions of the slow inward sodium current in frog atrial fibres, J. Mol. Cell. Cardiol. 7, 627 (1975).CrossRefGoogle Scholar
  59. 59.
    M. Kohlhardt, K. Haap, and H. R. Figulla, Influence of low extracellular pH upon the Ca inward current and isometric contractile force in mammalian ventricular myocardium, Pflügers Arch. 366, 31 (1976).CrossRefGoogle Scholar
  60. 60.
    M. Kohlhardt and M. Kübier, The influence of metabolic inhibitors upon the transmembrane slow inward current in the mammalian ventricular myocardium, Arch. Exp. Path Pharmak. 290, 265 (1975).CrossRefGoogle Scholar
  61. 61.
    T. F. McDonald and H. G. Sachs, Electrical activity in embryonic heart aggregates. Developmental aspects, Pflügers Arch. 354, 151 (1975).CrossRefGoogle Scholar
  62. 62.
    A. J. Pappano, Action potentials in chick atria. Increased susceptibility to blockade by tetrodotoxin during embryonic development, Circ. Res. 31, 379 (1972).Google Scholar
  63. 63.
    N. Sperelakis and N. Shigenobu, Organ- and cultured embryonic hearts of various ages. 1. Electrophysiology, J. Mol. Cell. Cardiol. 6, 449 (1974).CrossRefGoogle Scholar
  64. 64.
    S. Yamagishi and T. Sano, Effect of tetrodotoxin on the pacemaker action potential of the sinus node, Proc. Jap. Acad. 42, 1194 (1966).Google Scholar
  65. 65.
    A. L. Wit and P. F. Cranefield, Effect of verapamil on the sinoatrial and atrioventricular nodes of the rabbit and the mechanism by which it arrests reentrant atrioventricular nodal tachycardia, Circ. Res. 35, 413(1974).Google Scholar
  66. 66.
    M. Kohlhardt, H. R. Figulla, and O. Tripathi, The slow membrane channel as the predominant mediator of the excitation process of the sinoatrial pacemaker cell, Bas. Res. Cardiol. 71, 17 (1976).CrossRefGoogle Scholar
  67. 67.
    H. H. Lu, The effect of manganese on sinoatrial node pacemaker cells, in: Research in Physiology, p. 141 Aulo Gaggi, Bologna (1971).Google Scholar
  68. 68.
    O. F. Hutter and W. Trautwein, Vagal and sympathetic effects on the pacemaker fibres in the sinus venosus of the heart, J. Gen. Physiol. 39, 715 (1956).CrossRefGoogle Scholar
  69. 69.
    H. F. Brown, W. Giles, and S. J. Noble, Voltage clamp of frog sinus venosus, J. Physiol. 258,78 (1976).Google Scholar
  70. 70.
    A. Noma and H. Irisawa, Membrane currents in the rabbit sinoatrial node cell as studied by the duble microelectrode method, Pflügers Arch. 364, 45 (1976).CrossRefGoogle Scholar
  71. 71.
    N. Toda, Electrophysiological effects of potassium and calcium ions in the sinoatrial node in response to sympathetic nerve stimulation, Pflügers Arch. 310, (1969).Google Scholar
  72. 72.
    A. Noma and H. Irisawa, Effects of calcium ion on the rising phase of the action potential in rabbit sinoatrial node cells, Jap. J. Physiol. 26, 93 (1976).CrossRefGoogle Scholar
  73. 73.
    D. Benitez, D. Mascher, and J. Alanis, The electrical activity of the bundle of His. The fast and slow inward currents, Pflügers Arch. 345, 61 (1973).CrossRefGoogle Scholar
  74. 74.
    A. Paes De Carvalho, B. F. Hoffman, and P. De Carvalho, Two components of the action potential, J. Gen. Physiol. 54, 607 (1969).CrossRefGoogle Scholar
  75. 75.
    D. P. Zipes and C. Mendez, Action of manganese ions and tetrodotoxin on atrioventricular nodal transmembrane potentials in isolated rabbit hearts, Circ. Res. 32, 447 (1973).Google Scholar
  76. 76.
    D. Kreitner, Evidence for the existence of a rapid sodium channel in the membrane of rabbit sinoatrial cells, J. Mol. Cell. Cardiol. 7, 655 (1975).CrossRefGoogle Scholar
  77. 77.
    G. W. Beeler and H. Reuter, The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres, J. Physiol. 207, 211 (1970).Google Scholar
  78. 78.
    W. New and W. Trautwein, The ionic nature of slow inward current and its relation to contraction, Pflügers Arch. 334, 24 (1972).CrossRefGoogle Scholar
  79. 79.
    J. B. Bassingthwaighte and H. Reuter, Calcium reversal potential in cardiac muscle, Biophys. J. 12, 214(1972).Google Scholar
  80. 80.
    R. Kaufmann and A. Fleckenstein, Ca++-kompetitive elektromechanische Entkoppelung durch Ni++- und Co++-Ionen am Warmblütermyokard, Pflügers Arch. 282, 290 (1965).CrossRefGoogle Scholar
  81. 81.
    M. Kohlhardt and K. Haap, The response of Ca-mediated action potentials and contractile activity in mammalian ventricular myocardium towards alkalosis, Experientia 32, 150 (1976).CrossRefGoogle Scholar
  82. 82.
    H. Nawrath, T. F. McDonald, and W. Trautwein, The influence of cardiac glycosides on membrane currents in mammalian myocardium, Arch. Exp. Path. Pharmak. 287, R24 (1975).Google Scholar
  83. 83.
    M. Kohlhardt and Z. Mnich, Studies on the inhibitory effect of Verapmil on the slow inward current in mammalian ventricular myocardium, J. Mol. Cell. Cardiol. 10, 1037–1052 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • M. Kohlhardt
    • 1
  1. 1.Physiological InstituteUniversity of FreiburgFreiburgGermany

Personalised recommendations