Some Mechanical Characteristics of Strontium-Mediated Contractions in Heart Muscle

  • A. H. Henderson
  • M. R. Cattell


Phenomena that are the result of more than one interacting process, such as mechanical contraction of heart muscle, can usefully be studied by quantitative alteration of their component processes. Such quantitative differences may be achieved by studying different biological species, for example, or by using different cation species, as where strontium (Sr2+) is substituted for “messenger” calcium (Ca2+). The findings can be useful in testing hypotheses proposed as a result of other experiments and in suggesting hypotheses that form the starting point of further experiments. In the present instance correlation of mechanical and biochemical measurements should be of particular value.


Sarcoplasmic Reticulum Heart Muscle Plateau Phase Frog Muscle Oscillatory Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. J. Thomas, An antagonism in the action of calcium and strontium ions on the frog’s heart, J. Cell. Comp. Physiol 50, 249–264 (1957).CrossRefGoogle Scholar
  2. 2.
    J. Weyne, Effects of strontium ions on heart muscle. 1. Influences on contractility, Arch. Int. Physiol 74, 449–460 (1966).CrossRefGoogle Scholar
  3. 3.
    A. De Hemptinne, J. Weyne, and I. Lenson, Dynamic parameters of myocardial contractility under influence of calcium and strontium, Arch. Int. Physiol. Biochim. 75, 96–108 (1967).CrossRefGoogle Scholar
  4. 4.
    F. Verdonck and E. Carmeliet, Isometric contractions in cardiac Purkyne fibres: characteristics in Na free Sr Tyrode, Cardiovasc. Res. [Suppl. 1] 76–83 (1971).Google Scholar
  5. 5.
    J. Vereecke and E. Carmeliet, Sr action potentials in cardiac Purkyne fibres. I. Evidence for a regenerative increase in Sr conductance, Pflügers Arch. Ges. Physiol Menschen Tiere 322, 60–72 (1971).CrossRefGoogle Scholar
  6. 6.
    J. Vereecke and E. Carmeliet, Sr action potentials in cardiac Purkyne fibres. II. Dependence of the Sr conductance on the external Sr concentration and Sr-Ca antagonisms, Pflügers Arch. Ges. Physiol Menschen Tiere 322, 73–82 (1971).CrossRefGoogle Scholar
  7. 7.
    E. Carmeliet, P. Busselen, F. Verdonck, and J. Vereecke, Ca ions and excitation-contraction coupling in heart muscle, Verhandelingen, K. belgische academie voor geneeskunde 35, 181–222 (1973).Google Scholar
  8. 8.
    M. Kohlhardt, A. Herdey, and M. Kubier, Interchangeability of Ca ions and Sr ions as charge carriers of the slow inward current in mammalian myocardial fibres, Pflügers Arch. Ges. Physiol Menschen Tiere 344, 149–158 (1973).CrossRefGoogle Scholar
  9. 9.
    D. L. Brutsaert and V. A. Claes, Onset of mechanical activation of mammalian heart muscle in calcium- and strontium-containing solutions, Circ. Res. 35, 345–357 (1974).Google Scholar
  10. 10.
    G. J. Steiger, Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle, Pflügers Arch. 330, 347–361 (1971).CrossRefGoogle Scholar
  11. 11.
    A. Fabiato and F. Febiato, Brief review: Calcium release from the sarcoplasmic reticulum, Circ. Res. 40, 119–129 (1977).Google Scholar
  12. 12.
    G. Vassort, Influence of sodium ions on the regulation of frog myocardial contractility, Pflügers Arch. Ges. Physiol- Menschen Tiere 339, 225–240 (1973).CrossRefGoogle Scholar
  13. 13.
    M. Morad and Y. Goldman, Excitation-contraction coupling in heart muscle: membrane control of development of tension, Prog. Biophys. Mol. Biol. 27, 257–313 (1973).CrossRefGoogle Scholar
  14. 14.
    A. H. Henderson, R. Foreman, D. L. Brutsaert, and E. H. Sonnenblick, Tetanic contraction in mammalian cardiac muscle, Cardiovasc. Res. [Suppl. 1] 96–100 (1971).Google Scholar
  15. 15.
    A. H. Henderson and M. R. Cattell, Prolonged biphasic strontium-mediated contractions of cat and frog heart muscle and their response to inotropic influences, J. Mol. Cell. Cardiol. 8, 299–319 (1976).CrossRefGoogle Scholar
  16. 16.
    N. A. Staley and E. S. Benson, The ultrastructure of frog ventricular cardiac muscle and its relationship to mechanisms of excitation-contraction coupling, J. Cell Biol. 38, 99–114 (1968).CrossRefGoogle Scholar
  17. 17.
    E. Coraboeuf, Membrane electrical activity and double component contraction in cardiac tissue, J. Mol. Cell. Cardiol. 6, 215–225 (1974).CrossRefGoogle Scholar
  18. 18.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26, 1–43 (1973).CrossRefGoogle Scholar
  19. 19.
    M. A. Kirchberger, M. Tada, D. I. Repke, and A. M. Katz, Cyclic adenosine 3′,5′- monophosphate-dependent protein kinase stimulation of calcium uptake by canine cardiac microsomes, J. Mol. Cell. Cardiol 4, 673–680 (1972).CrossRefGoogle Scholar
  20. 20.
    G. A. Langer, J. S. Frank, and A. J. Brady, The myocardium, in: International Review of Physiology, Cardiovascular Physiology II, Vol. 9 (A. C. Guyton and A. W. Cowley, eds.), University Park Press, Baltimore (1976).Google Scholar
  21. 21.
    C. Edwards, H. Lorkovic, and A. Weber, The effect of the replacement of calcium by strontium on excitation-contraction coupling in frog skeletal muscle, J. Physiol. 186, 295–306 (1966).Google Scholar
  22. 22.
    A. H. Henderson, V. A. Claes, and D. L. Brutsaert, Influence of caffeine and other inotropic interventions on the onset of unloaded shortening velocity in mammalian heart muscle, Circ. Res. 33, 291–302 (1973).Google Scholar
  23. 23.
    A. H. Henderson and D. L. Brutsaert, Force-velocity-length relationship in heart muscle: Lack of time-independence during twitch contractions of frog venticle strips with caffeine, Pflügers Arch. Ges. Physiol. Menschen Tiere 348, 59–64 (1974).CrossRefGoogle Scholar
  24. 24.
    A. Weber and R. Herz, The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum, J. Gen. Physiol 52, 750–759 (1968).CrossRefGoogle Scholar
  25. 25.
    A. H. Henderson and M. R. Cattell, Length-induced changes in activation during contraction. A study of mechanical oscillations in strontium-mediated contractions of cat and frog heart muscle, Circ. Res. 38, No. 4 (1976).Google Scholar
  26. 26.
    D. L. Brutsaert and A. H. Henderson, Time course of mechanical activation in cardiac muscle, Eur. J. Cardiol. 1, 201–208 (1973).Google Scholar
  27. 27.
    D. L. Brutsaert, V. A. Claes, and E. H. Sonnenblich, Effects of abrupt load alterations on force-velocity-length and time relations during isotonic contractions of heart muscle; load clamping, J. Physiol. (Lond.) 216, 319–330 (1971).Google Scholar
  28. 28.
    R. J. Podolsky, Kinetics of muscular contraction: The approach to the steady state, Nature (Lond) 188, 666–668 (1960).CrossRefGoogle Scholar
  29. 29.
    K. E. Machin and J. W. S. Pringle, The physiology of insect fibrillar muscle. III. The effect of sinusoidal changes of length of a beetle flight muscle, Proc. R. Soc. Lond. (Biol) 152, 311–330 (1960).CrossRefGoogle Scholar
  30. 30.
    M. M. Civan and R. J. Podolsky, Contraction kinetics of striated muscle fibres following quick changes in load, J. Physiol. (Lond.) 184, 511–534 (1966).Google Scholar
  31. 31.
    B. R. Jewell and J. C. Riiegg, Oscillatory contraction of insect fibrillar muscle after glycerol extraction, Proc. R. Soc. Lond. (Biol.) 164, 428–459 (1966).CrossRefGoogle Scholar
  32. 32.
    C. F. Armstrong, A. F. Huxley, and F. J. Julian, Oscillatory responses in frog skeletal muscle fibres (abstr.), J. Physiol. (Lond.) 186, 26–27 (1966).Google Scholar
  33. 33.
    J. W. S. Pringle, Contractile mechanism of insect fibrillar muscle, Prog. Biophys. Mol. Biol. 17, 1–60 (1967).CrossRefGoogle Scholar
  34. 34.
    J. Thorson and D. C. S. White, Distribution representations for actin-myosin interaction in the oscillatory contraction of muscle, Biophysics 19, 360–390 (1969).Google Scholar
  35. 35.
    J. C. Riiegg, G. J. Steiger, and M. Schadler, Mechanical activation of the contractile system in skeletal muscle, Pflügers Arch. 319, 139–145 (1970).CrossRefGoogle Scholar
  36. 36.
    M. Schadler, G. J. Steiger, and J. C. Riiegg, Mechanical activation and isometric oscillation in insect fibrillar muscle, Pflügers Arch. 330, 217–229 (1971).CrossRefGoogle Scholar
  37. 37.
    G. J. Steiger, Stretch activation and myogenic oscillation of isolated contractile structures of heart muscle, Pflügers Arch. 330, 347–361 (1971).CrossRefGoogle Scholar
  38. 38.
    P. Heinl, H. J. Kuhn, and J. C. Riiegg, Tension responses to quick length changes of glycerinated skeletal muscle fibres from the frog and tortoise, J. Physiol. (Lond.) 237, 243–258 (1974).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • A. H. Henderson
    • 1
  • M. R. Cattell
    • 1
  1. 1.Department of CardiologyWelsh National School of MedicineCardiff, WalesUK

Personalised recommendations