Effects of Strontium Ions on Contractility of Isolated Heart Preparations

  • J. Weyne
  • A. De Hemptinne
  • I. Leusen


Ca2+ ions are essential for coupling between excitation of the cardiac cell membrane and activation of the contractile proteins (excitation-contraction coupling). This process can be summarized as follows (for reviews see refs. 1–3): during the cardiac action potential, which spreads over the outer membranes [and in mammals also over the membranes of transverse (T) tubules that penetrate into the cell], calcium ions (Ca2+) flow across the membrane into the cardiac muscle cell. This Ca2+ influx, together with a release of Ca2+ from the sarcoplasmic reticulum, gives an increased concentration of free Ca2+ in the sarcoplasm, which permits binding of Ca2+ to troponin and ultimately leads to activation of the myofibrillar ATPase and to sliding of the filaments, with shortening of the sarcomeres. Recent experiments show that this Ca2+ influx is electrogenic, e.g., Ca2+ transports electrical charges across the cell membrane, and contributes to the depolarization of the cell membrane (for a review, see ref. 4) in addition to initiation of contraction. The sarcoplasmic reticulum and its transport system (which has a high affinity for Ca2+) then reduce the free sarcoplasmic Ca2+ concentration and cause relaxation of the contractile proteins; Ca ions are stored in the sarcoplasmic reticulum, and excess Ca2+ is transported out of the cell.


Sarcoplasmic Reticulum Papillary Muscle Negative Inotropic Effect Positive Inotropic Effect Tension Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ebashi, M. Endo, and I. Ohtsuki, Control of muscle contraction, Q. Rev. Biophys. 2, 351–384 (1969).CrossRefGoogle Scholar
  2. 2.
    J. B. Bassingthwaighte and H. Reuter, Calcium movements and excitation contraction coupling in cardiac cells, in: Electrical Phenomena in the Heart (W. C. De Mello, ed.), Academic Press, New York (1972).Google Scholar
  3. 3.
    M. Morad and Y. Goldman, Excitation-contraction coupling in heart muscle: Membrane control of development of tension, Progr. Biophys. Mol. Biol. 27, 257–313 (1973).CrossRefGoogle Scholar
  4. 4.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, Progr. Biophys. Mol. Biol. 26, 1–43 (1973).CrossRefGoogle Scholar
  5. 5.
    B. F. Hoffman and E. E. Suckling, Effects of several cations on transmembrane potentials of cardiac muscle, Am. J. Physiol. 186, 317–324 (1956).Google Scholar
  6. 6.
    S. Ringer, A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart, J. Physiol. (Lond.) 4, 29–42 (1883).Google Scholar
  7. 7.
    S. Ringer and H. Sainsbury, Practioner, 31, 81 (1883). Cited in S. Garb (Ref. 8).Google Scholar
  8. 8.
    S. Garb, The effects of potassium, ammonium, calcium, strontium and magnesium on the electrogram and myogram of mammalian heart muscles, J. Pharmacol. Exp. Ther. 101,317–326 (1951).Google Scholar
  9. 9.
    L. J. Thomas, Jr. An antagonism in the action of calcium and strontium ions on the frog’s heart, J. Cell. Comp. Physiol. 50, 249–264 (1957).CrossRefGoogle Scholar
  10. 10.
    W. G. Nayler and P. F. Emery, Effect of strontium on cardiac contractility and membrane resting potentials, Am. J. Physiol. 203, 844–848 (1962).Google Scholar
  11. 11.
    D. Hartman and M. Reiter, Elktromechanische Koppelung durch Strontium, Naun. Schmiedebergs Arch. Exp. Pathol. Pharmakol. 251, 151–152(1965).CrossRefGoogle Scholar
  12. 12.
    P. Guilbault, E. Coraboeuf, and Y. Padel, Effects d’ions anormaux sur le mécanogramme ventriculaire du coeur isolé de Roussette, C. R. Soc. Biol. 157, 1378–1383 (1963).Google Scholar
  13. 13.
    E. Coraboeuf, P. Guilbault, D. Breton, et al., Action des ions strontium sur le coeur isole de rat et de cobaye. C. R. Soc. Biol. 155, 1251–1257(1961).Google Scholar
  14. 14.
    J. Weyne, Effects of strontium ions on heart muscle. I. Influences on contractility, Arch. Int. Physiol. Biochem. 74, 449–460 (1966).CrossRefGoogle Scholar
  15. 15.
    J. Weyne, Effects of strontium ions on heart muscle. II. Influence on excitability, conduction and potassium efflux, Arch. Int. Physiol. Biochem. 74, 461–475 (1966).CrossRefGoogle Scholar
  16. 16.
    J. Weyne and A. de Hemptinne, Antagonisme entre Taction des ions strontium et sodium sur le mécanogramme du coeur isolé de grenouille, C. R. Soc. Biol. 161, 962–964 (1967).Google Scholar
  17. 17.
    A. de Hemptinne, J. Weyne, and I. Leusen, Dynamic parameters of myocardial contractility under influence of calcium and strontium, Arch. Int. Physiol. Biochem. 75, 96–108 (1967).CrossRefGoogle Scholar
  18. 18.
    A. de Hemptinne and J. Weyne, The influence of strontium on the electric activity of cat papillary muscles and Purkinje fibers of sheep heart, Arch. Int. Pharmacodyn. 165, 494–503 (1967).Google Scholar
  19. 19.
    D. L. Brutsaert, Frequency potentiation and paired stimulation potentiation of cat papillary muscles in calcium and in strontium containing media, Arch. Int. Physiol. Biochem. 75, 229–244 (1967).CrossRefGoogle Scholar
  20. 20.
    B. G. Bass, E. M. Ciulla, P. Klop, et al., Some electrical and mechanical effects of strontium on toad ventricular muscle: Comparison to calcium, J. Physiol. (Lond.) 252, 547–564 (1975).Google Scholar
  21. 21.
    D. L. Brutsaert and V. A. Claes, Onset of mechanical activation of mammalian heart muscle in calcium- and strontium-containing solutions, Circ. Res. 35, 345–357 (1974).Google Scholar
  22. 22.
    R. A. Buccino, E. H. Sonnenblick, J. F. Spann, et al., Interactions between changes in the intensity and duration of the active state in the characterization of inotropic stimuli on heart muscle, Circ. Res. 21, 857–867 (1967).Google Scholar
  23. 23.
    J. R. Blinks, C. B. Olson, B. R. Jewell, et al., Influence of caffeine and other methylxanthines on mechanical properties of isolated mammalian heart muscle, Circ. Res. 30, 367–392 (1972).Google Scholar
  24. 24.
    J. Vereecke and E. Carmeliet, Sr action potentials in cardiac Purkinje fibres. II. Dependences of the Sr conductance on the external Sr concentration and Sr-Ca antagonism, Pflügers Arch. 322, 73–82 (1971).CrossRefGoogle Scholar
  25. 25.
    W. H. Barry, A. M. Marlon, and D. C. Harrison, The hemodynamic effect of strontium chloride in the intact dog, Proc. Soc. Exp. Biol. Med. 141, 52–58 (1972).Google Scholar
  26. 26.
    I. De B. Daly and A. J. Clark, The action of ions upon the frog’s heart, J. Physiol. (Lond.) 54, 367–383(1921).Google Scholar
  27. 27.
    H. C. Luttgau and R. Niedergerke, The antagonism between Ca and Na ions on the frog’s heart, J. Physiol. (Lond.) 143, 486–505 (1958).Google Scholar
  28. 28.
    M. Reiter, Der Einfluss der Natriumionen auf die Beziehung zwischen Frequenz und Kraft der Kontraktion des isolierten Meerschweinchenmyokas, Arch. Exp. Pathol. Pharmakol. 254, 261–286 (1966).Google Scholar
  29. 29.
    R. Niedergerke, Movements of Ca in frog heart ventricles at rest and during contractures, J. Physiol. (Lond.) 167, 515–550 (1963).Google Scholar
  30. 30.
    G. A. Langer, Kinetic studies of calcium distribution in ventricular muscle of the dog, Circ. Res. 25, 393–405 (1964).Google Scholar
  31. 31.
    H. Reuter and N. Seitz, Dependence of calcium efflux from cardiac muscle on temperature and external ion composition. J. Physiol. (Lond.) 195, 451–470 (1968).Google Scholar
  32. 32.
    J. Koch Weser and J. R. Blinks, The influence of the interval between beats on myocardial contractility, Pharmacol. Rev. 15, 601–652 (1963).Google Scholar
  33. 33.
    Conference on paired pulse stimulation and postextrasystolic potentiation in the heart, Bull. N. Y. Acad. Med. 41, nos. 5 and 6 (1965).Google Scholar
  34. 34.
    D. L. Brutsaert, Studies on the potentiation of contractility of heart papillary muscle by paired stimulation, Arch. Int. Physiol. Biochem. 74, 642–664 (1966).CrossRefGoogle Scholar
  35. 35.
    R. Kaufmann and A. Fleckenstein, Die Bedeuting der Aktionspotentialdauer und der Ca++-Ionen beim Zustandekommen der positiv-inotropen Kältewirkungen am Warmblüter-Myokard. Pflugers Arch. 285, 1–18 (1965).CrossRefGoogle Scholar
  36. 36.
    G. S. Dawes, Synthetic substitutes for quinidine, Br. J. Pharmacol. 1, 90–112 (1946).Google Scholar
  37. 37.
    E. E. Carmeliet, Chloride and Potassium Permeability in Cardiac Purkinje Fibres (S. A. Arscia, ed.), Brussels (1961).Google Scholar
  38. 38.
    M. Kohlhardt, A. Herdey, and M. Kubier, Interchangeably of Ca ions and Sr ions as charge carriers of the slow inward current in mammalian myocardial fibres, Pflügers Arch. 344,149–158 (1973).CrossRefGoogle Scholar
  39. 39.
    S. K. B. Donaldson and W. G. L. Kerrick, Characterization of the effects of Mg2+ on Ca2+-and Sr2+ activated tension generation of skinned skeletal muscle fibres, J. Gen. Physiol. 66, 427–444 (1975).CrossRefGoogle Scholar
  40. 40.
    R. J. Podolsky, cited in C. Edwards, H. Lorkovic, and A. Weber, The effect of the replacement of calcium by strontium on excitation contraction coupling in frog skeletal muscle, J. Physiol. (Lond.) 186, 295–306 (1966).Google Scholar
  41. 41.
    P. C. Caldwell and G. Walster, Studies on the microinjection of various substances into crab muscle fibres, J. Physiol. (Lond.) 169, 353–372 (1963).Google Scholar
  42. 42.
    M. Matsumura and H. Mashima, Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibres, Jpn. J. Physiol. 26, 145–157 (1976).CrossRefGoogle Scholar
  43. 43.
    S. Ebashi, A. Kodama, and F. Ebashi, Troponin. I. Preparation and physiological function, J. Biochem. 64, 465–477 (1968).Google Scholar
  44. 44.
    C. Edwards, H. Lorkovic, and A. Weber, The effect of the replacement of calcium by strontium on excitation contraction coupling in frog skeletal muscle, J. Physiol. (Lond.) 186, 295–306 (1966).Google Scholar
  45. 45.
    A. V. Somlyo and A. P. Somlyo, Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle, Science 174, 955–958 (1971).CrossRefGoogle Scholar
  46. 46.
    A. H. Henderson and M. R. Cattell, Prolonged biphasic strontium mediated contractions of cat and frog heart muscle and their response to inotropic influences, J. Mol. Cell. Cardiol. 8, 299–319 (1976).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • J. Weyne
    • 1
  • A. De Hemptinne
    • 1
  • I. Leusen
    • 1
  1. 1.Laboratory of Normal and Pathological PhysiologyUniversity of GhentGhentBelgium

Personalised recommendations