Advertisement

Hemodynamic Effects of Strontium in the Dog

  • William H. Barry
  • Donald C. Harrison

Abstract

The divalent cation of strontium, Sr2+, has been shown to be capable of substituting for Ca2+ in maintaining excitability of certain nerve and muscle membranes (1,2); in electromechanical coupling in an alga (3); and in excitation-contraction coupling in both skeletal and cardiac muscle (4). Also, in some isolated cardiac muscle preparations it has been shown to have potent positive inotropic effects (5–7).

Keywords

Hemodynamic Effect Peripheral Resistance Aortic Pressure Positive Inotropic Effect Aortic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Tasaki, A. Watanabe, and L. Lerman, Role of divalent cations in excitation of squid giant axons, Am. J. Physiol. 213, 1465–1474 (1967).Google Scholar
  2. 2.
    S. Hagiwara and N. Naka, The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++, J. Gen. Physiol. 48, 141–162 (1964).CrossRefGoogle Scholar
  3. 3.
    W. Barry, Coupling of excitation and cessation of cyclosis in Nitella: Role of divalent cations, J. Cell. Physiol. 72, 153–160 (1968).CrossRefGoogle Scholar
  4. 4.
    S. Ebashi, A. Kodama, F. Ebashi, and I. Troponin, Preparation and physiological function, J. Biochem. 64, 465–477 (1968).Google Scholar
  5. 5.
    S. Garb, The effects of potassium, ammonium, calcium, strontium and magnesium on the electrogram and myogram of mammalian heart muscle, J. Pharm. Exp. Ther. 101, 317–326 (1951).Google Scholar
  6. 6.
    W. Naylor and P. Emery, Effect of strontium on cardiac contractility and membrane resting potentials, Am. J. Physiol. 203, 844–848 (1962).Google Scholar
  7. 7.
    A. DeHemptine, J. Weyne, and I. Leusen, Dynamic parameters of myocardial contractility under influence of calcium and strontium, Arch. Int. Physiol. Biochem. 75, 96–108 (1967).CrossRefGoogle Scholar
  8. 8.
    L. J. Thomas, Jr., An antagonism in the action of calcium and strontium ions on the frogs’ heart, J. Cell. Comp. Physiol. 50, 249–264 (1957).CrossRefGoogle Scholar
  9. 9.
    R. Buccino, E. Sonnenblick, J. Spann, Jr., W. Friedman, and E. Braunwald, Interactions between changes in the intensity and duration of the active state in the characterization of inotropic stimuli on heart muscle, Circ. Res. 21, 857–867 (1967).Google Scholar
  10. 10.
    B. G. Bass, E. M. Ciulla, P. Klop, and S. Van Boot, Some electrical and mechanical effects of strontium on toad ventricular muscle: Comparison to calcium, J. Physiol. (London) 252, 547–564(1975).Google Scholar
  11. 11.
    A. Marlon, M. Adams, and D. C. Harrison, An assessment of factors altering the measurement of ventricular dp/dt, Fed. Proc, Fed. Amer. Soc. Exp. Biol. 30, 612a (1971).Google Scholar
  12. 12.
    R. Taylor, Theoretical analysis of the isovolumic phase of left ventricular contraction in terms of cardiac muscle mechanics, Cardiovasc. Res. 4, 429–435 (1970).CrossRefGoogle Scholar
  13. 13.
    D. T. Mason, J. Spann, Jr., and R. Zelis, Quantification of the contractile state of the intact human heart. Maximal velocity of contractile element shortening determined by the instantaneous relation between the rate of pressure rise and pressure in the left ventricle during isovolumic systole, Am. J. Cardiol. 26, 248–435 (1970).CrossRefGoogle Scholar
  14. 14.
    P. M. Hudgins and G. B. Weiss, Effects of Ba, Sr and stimulatory agents on Ca movements and contraction in vascular smooth muscle, Fed. Proc, Fed. Amer. Soc. Exp. Biol. 28, 541a (1969).Google Scholar
  15. 15.
    M. Kohlhardt, A. Herdey, and M. Kubier, Interchangeability of Ca ions and Sr ions as change carriers of the slow inward current in mammalian myocardial fibers, Pflügers Arch. 344, 149–158 (1973).CrossRefGoogle Scholar
  16. 16.
    A. H. Henderson and M. R. Cattell, Prolonged biphasic strontium-mediated contractions of cat and frog heart muscle and their response to inotropic influences, J. Mol. Cell. Cardiol. 8, 299–319 (1976).CrossRefGoogle Scholar
  17. 17.
    D. L. Brutsaert and V. A. Claes, Onset of mechanical activation of mammalian heart muscle in calcium and strontium containing solutions, Circ. Res. 35, 345–371 (1974).Google Scholar
  18. 18.
    M. Kleinfeld and E. Stein, Action of divalent cations on membrane potentials and contractility in rat atrium, Am. J. Physiol. 215, 593–559 (1968).Google Scholar
  19. 19.
    L. Yeatman, W. Parmley, C. Urschel, and E. Sonnenblick, Dynamics of contractile elements in isometric contractions of cardiac muscle, Am. J. Physiol. 220, 534–542 (1971).Google Scholar
  20. 20.
    K. C. Wang and A. R. Mclntyre, Influence of strontium on the cardiotropic actions of rhodochlorin and ouabain, Proc. Soc. Exp. Biol. Med. 126, 640–643 (1967).Google Scholar
  21. 21.
    P. R. Foster, V. Elharrar, and D. P. Zipes, Accelerated ventricular escapes induced in the intact dog by barium, strontium, and calcium, 200, 373–383 (1977).Google Scholar
  22. 22.
    P. Côte and D. C. Harrison, Hemodynamic effects of strontium chloride in acute experimental myocardial infarction, Can. J. Physiol. Pharmacol. 52, 920–929 (1974).CrossRefGoogle Scholar
  23. 23.
    W. H. Barry, A. M. Marlon, and D. C. Harrison, The hemodynamic effects of strontium chloride in the intact dog, Proc. Soc. Exp. Biol. Med. 141, 52–58 (1972).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • William H. Barry
    • 1
  • Donald C. Harrison
    • 2
  1. 1.Department of MedicineHarvard Medical SchoolBostonUSA
  2. 2.Cardiology DivisionStanford University of MedicineStanfordUSA

Personalised recommendations