Chemistry of Strontium

  • Sadayuki Inoue


Sr, a member of alkaline earth elements (Group 2a in the periodic table) occupies in many chemical aspects an intermediate position between Ca and Ba. The atomic number is 38 and the atomic weight is 87.62. Sr occurs in nature chiefly as SrSO4 (celestite) although SrCO3 (strontianite) is also found in several areas of the world. Sr was named after a Scottish village of Strontian, where its distinct properties were first discovered by Crawford and Cruikshank (1).


Ionic Potential Alkaline Earth Element Calcium Hydroxyapatite Allotropic Form Stable Strontium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. R. Partington, Early history of strontium, in: Handbook of Stable Strontium, pp. 1–9, Plenum, New York (1981).Google Scholar
  2. 2.
    N. V. Sidgwick, The chemical elements and their compounds, Vol. 1, p. 221, Oxford University Press, London (1951).Google Scholar
  3. 3.
    A. F. Wells, Structural Inorganic Chemistry, 3rd ed. p. 788, Oxford University Press, London (1962).Google Scholar
  4. 4.
    E. A. Sheldon and A. J. King, Structure of the allotropic forms of strontium, Acta Cryst 6, 100 (1953).CrossRefGoogle Scholar
  5. 5.
    R. G. Hirst, A. J. King, and F. A. Kanda, The barium-strontium equilibrium system, J. Phys. Chem. 60, 302–304 (1956).CrossRefGoogle Scholar
  6. 6.
    A. Guntz and L. Galliot, Sur la preparation du strontium cristallise, C. R. Acad. Sci. (Paris) 151, 813(1910).Google Scholar
  7. 7.
    J. C. Schottmiller, A. J. King, and F. A. Kanda, The calcium-strontium metal phase system, J. Phys. Chem. 62, 1446–1449 (1958).CrossRefGoogle Scholar
  8. 8.
    F. E. Wang, F. A. Kanda, and A. J. King, The lithium-strontium equilibrium system, J. Phys. Chem. 66, 2138–2142 (1962).CrossRefGoogle Scholar
  9. 9.
    K. K. Kelley, Contributions to the data on theoretical metallurgy. V. Heats of fusion of inorganic substances, U.S. Bur. Mines, Bull. No. 393, 166 pp. (1936).Google Scholar
  10. 10.
    T. Lyman (ed.), Metal Handbook 8th edn., Vol. 1, 1961, American Society for Metals, Metal Park, Ohio.Google Scholar
  11. 11.
    D. R. Stull and G. C. Sinke, Thermodynamic properties of the elements in Their Standard State, American Chemical Society, Washington, D.C. (1956).Google Scholar
  12. 12.
    E. Teatum, K. Gschneidner, Jr., and J. Waber, Compilation of calculated data useful in predicting metallurgical behavior of the elements in binary alloy system, 225 pp. U.S. Atomic Energy Commun. Rept. LA-2345 (1960).Google Scholar
  13. 13.
    W. B. Pearson, Handbook of Lattice Spacings and Structure of Metals, Pergamon Press, New York (1958).Google Scholar
  14. 14.
    J. W. Mellor, A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 3, Longmans, Green, New York (1946).Google Scholar
  15. 15.
    D. M. Considine, (ed.), Van Nostrand’s Scientific Encyclopedia, 5th ed, pp. 2104–2105, Van Nostrand-Reinhold, New York (1976).Google Scholar
  16. 16.
    C. A. Hampel and G. G. Hawley, eds., The Encyclopedia of Chemistry, 3rd ed. pp. 1060–1062, Van Nostrand-Reinhold, New York (1973).Google Scholar
  17. 17.
    G. Masing, Lehrbuch der Allgemeinen Metallkunde, Springer-Verlag, Berlin, (1950).Google Scholar
  18. 18.
    L. M. Roberts, The atomic heats of calcium, strontium and barium between 1.5° and 20° K, Proc. Phys. Soc. (London) B70, 738–743 (1957).Google Scholar
  19. 19.
    R. L. Collin, Precipitate formation in the strontium-phosphate system, Science 151, 1386–1388 (1966).CrossRefGoogle Scholar
  20. 20.
    L. E. Holt, Jr., J. A. Pierce, and C. N. Kajdi, The solubility of the phosphates of strontium, barium, and magnesium and their relation to the problem of calcification, J. Colloid Sci. 9, 409–426 (1954).CrossRefGoogle Scholar
  21. 21.
    R. Klement, Basic phosphates of bivalent metals. IV. Strontium hydroxyapatite, Z.Anorg. Allgem. Chem. 242, 215–221 (1939).CrossRefGoogle Scholar
  22. 22.
    C. Lagergren and D. Carlström, Crystallographic studies of calcium and strontium hydroxy-apatites, Acta Chem. Scand. 11, 545–550 (1957).CrossRefGoogle Scholar
  23. 23.
    W. Rathje, The phosphates. II. Neutral and basic phosphates of the alkali earth metals, Ber 74B, 342–349 (1941).Google Scholar
  24. 24.
    R. L. Collin, Strontium-calcium hydroxyapatite solid solutions: Preparation and lattice constant measurements, J. Am. Chem. Soc. 81, 5275–5278 (1959).CrossRefGoogle Scholar
  25. 25.
    G. E. Harrison, E. Lumsden, W. H.A. Raymond, et al., On the mechanism of skeletal fixation of strontium. I, II. Arch. Biochem. Biophys. 80, 97–113 (1959).CrossRefGoogle Scholar
  26. 26.
    H. P. Schoenberg, Extent of strontium substitution for calcium in hydroxyapatite, Biochim. Biophys. Acta 75, 96–103 (1963).CrossRefGoogle Scholar
  27. 27.
    M. I. Kay, R. A. Young, and A. S. Posner, Crystal structure of hydroxyapatite, Nature (London) 204, 1050–1052 (1964).CrossRefGoogle Scholar
  28. 28.
    E. Eisenberg, The biological metabolism of strontium, in: Biological Mineralization (I. Zipking, ed.), pp. 435–442, Wiley, New York (1973).Google Scholar
  29. 29.
    R. D. Gillard, The simple chemistry of calcium and its relevance to biological systems, in Calcium and Cellular Function (A. W. Cuthbert, ed.), pp. 3–9, MacMillan, London (1969).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Sadayuki Inoue
    • 1
    • 2
  1. 1.Medical Research UnitSt. Mary’s Hospital CenterMontrealCanada
  2. 2.Gastrointestinal Research LaboratoryMcGill UniversityMontrealCanada

Personalised recommendations