Contractions of Skeletal Muscles and Underlying Changes: Effects of Strontium

  • Hrvoje Lorković
  • Charles Edwards


While Sr2+ is present in the body in only trace amounts and has no identified role in a normal organism, it early attracted the attention of muscle physiologists. One year after the discovery of the need for the presence of Ca2+ in maintaining contractility in spontaneously beating isolated frog hearts, Ringer and Sainsbury (1) reported on the successful replacement of Ca2+ by Sr2+ in the solution. Thus Sr2+ can justly be said to have been present at the first birthday of modern muscle physiology. The philosophy of using this ion for physiological experiments was expressed clearly by Mines (2) in 1911:”. . . the most promising way of attacking the problem of how this or that ion serves its particular role in a living tissue is to discover how far it can be replaced by other ions and what are the physical and chemical relations of those found to be effective substitutes. The enormous physiological importance of calcium lends special interest to the enquiry as to how far it may be replaced by its congeners.”


Sarcoplasmic Reticulum Divalent Cation Frog Muscle Peak Tension Skeletal Muscle Contraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Ringer and H. Sainsbury, An investigation regarding the action of strontium and barium salts compared with the action of lime on the ventrical of the frog’s heart, The Practitioner 31, 81–93 (1883).Google Scholar
  2. 2.
    R. G. Mines, On the replacement of calcium in certain neuromuscular mechanisms by allied substances, J. Physiol (London) 42, 251–266 (1911).Google Scholar
  3. 3.
    F. Taga, I. Takayanagi, and K. Takagi, Effects of some divalent cations on the denervated skeletal muscle of the rat, Jpn. J. Pharmacol. 22, 777–785 (1972).CrossRefGoogle Scholar
  4. 4.
    H. C. Lüttgau, The action of calcium ions on potassium contractures of single muscle fibres, J. Physiol. (London) 168, 679–697 (1963).Google Scholar
  5. 5.
    D. J. Jenden and J. F. Reger, The role of resting potential changes in the contractile failure of frog sartorius muscles during calcium deprivation, J. Physiol. (London) 169, 889–901 (1963).Google Scholar
  6. 6.
    P. Pauschinger, H. Lorkovic, and K. Brecht, Wirkungen des Ca-Entzuges auf das Membranpotential und die mechanische Aktivität der isolierten phasischen Skeletmuskeifaser des Frosches, Pflügers Arch. 278, 541–552 (1964).CrossRefGoogle Scholar
  7. 7.
    C. M. Armstrong, F. M. Bezanilla, and P. Horowicz, Twitches in the presence of ethylene glycol-bis(α-aminoether)-N, N’-tetraacetic acid, Biochem. Biophys. Acta 267, 605–608 (1972).CrossRefGoogle Scholar
  8. 8.
    E. Stefani and D. J. Chiarandini, Skeletal muscle dependence of potassium contractures on extracellular calcium, Pflügers Arch. 343, 143–150 (1973).CrossRefGoogle Scholar
  9. 9.
    A. Sandow, M. K. D. Pagala, and E. C. Sphicas, Excitation-contraction coupling: Effect of zero Ca medium, Biochem. Biophys. Acta 404, 157–163 (1975).CrossRefGoogle Scholar
  10. 10.
    E. Bulbring, M. Holman, and H. Lüllman. Effects of calcium deficiency on striated muscle of the frog, J. Physiol (London) 133, 102–117 (1956).Google Scholar
  11. 11.
    D. Zacharová and J. Zachar, The effect of external calcium ions on the excitation-contraction coupling in single muscle fibres of the crayfish, Physiol Bohemoslov. 16, 191–207 (1967).Google Scholar
  12. 12.
    C. Caputo, The role of calcium in the process of excitation and contraction in skeletal muscle, J. Gen. Physiol. 51, 180s-187s (1968).Google Scholar
  13. 13.
    L. Zett and G. Küchler, Einfluss von Strontium und Bariumionen auf Membranpotential, Ionengehalt und Koffeinkontraktur des isolierten Froschmuskels, Acta Biol. Med. Germ. 22, 105–115 (1969).Google Scholar
  14. 14.
    R. Höber, Zur Analyse der Calciumwirkumg, Pflügers Arch. 182, 104–113 (1920).CrossRefGoogle Scholar
  15. 15.
    P. Fatt and B. L. Ginsborg, The ionic requirements for the production of action potentials in crustacean muscle fibres, J. Physiol. (London) 142, 516–543 (1958).Google Scholar
  16. 16.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26, 1–43 (1973).CrossRefGoogle Scholar
  17. 17.
    R. Werman, R. V. McCann, and H. Grundfest, Graded and all-or-none electrogenesis in arthropod muscle. I. The effects of alkali-earth cations on the neuromuscular system of Romalea microptera, J. Gen. Physiol. 44, 979–995 (1961).CrossRefGoogle Scholar
  18. 18.
    R. Werman and H. Grundfest, Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers, J. Gen. Physiol. 44, 997–1027 (1961).CrossRefGoogle Scholar
  19. 19.
    N. Sperelakis, M. F. Schneider, and E. J. Harris, Decreased K+ conductance produced by Ba++ in frog sartorius fibers, J. Gen. Physiol. 50, 1565–1583 (1967).CrossRefGoogle Scholar
  20. 20.
    S. Hagiwara and K. Naka, The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++, J. Gen. Physiol. 48, 141–162(1964).CrossRefGoogle Scholar
  21. 21.
    Y. Ito, H. Kuriyama, and N. Tashiro, Effects of divalent cations on spike generation in the longitudinal somatic muscle of the earthworm, J. Exp. Biol. 52, 79–94 (1970).Google Scholar
  22. 22.
    S. Hagiwara and Y. Kidokoro, Na and Ca components of action potential in amphioxus muscle cells, J. Physiol (London) 219, 217–232 (1971).Google Scholar
  23. 23.
    H. Washio, The ionic requirements for the initiation of action potentials in insect muscle fibers, J. Gen. Physiol. 59, 121–134 (1972).CrossRefGoogle Scholar
  24. 24.
    M. Hencek, W. Nonner, and R. Stampfli, Voltage clamp of a small muscle membrane area by means of a circular sucrose gap arrangement, Pflugers Arch. 313, 71–79 (1969).CrossRefGoogle Scholar
  25. 25.
    Y. Mounier and G. Vassort, Initial and delayed membrane currents in crab muscle fibre under voltage clamp conditions, J. Physiol (London) 251, 589–608 (1975).Google Scholar
  26. 26.
    L. V. Heilbrunn and F. J. Wiercinski, The action of various cations on muscle protoplasm, J. Cell Comp. Physiol. 29, 15–32(1947).CrossRefGoogle Scholar
  27. 27.
    G. B. Frank, Inward movement of calcium as a link between electrical and mechanical events in contraction, Nature (London) 182, 1800–1801 (1958).CrossRefGoogle Scholar
  28. 28.
    G. B. Frank, Effects of changes in extracellular calcium concentration on the potassium induced contracture of frog’s skeletal muscle, J. Physiol. (London) 151, 518–538 (1960).Google Scholar
  29. 29.
    P. Pauschinger, Über die Beeinflussung von Kontrakturen langsamer (tonischer) und schneller (phasischer) Skeletmuskeln durch Calcium, Pflügers Arch. 272, 43 (1960).CrossRefGoogle Scholar
  30. 30.
    K. Brecht, K. Barbey, W. Kutscha, and P. Pauschinger, Tetanus and Kontraktur bei der Verkürzung quergestreifter schneller und langsamer Muskeln in isotonischer KCl-Lösung und ihre Abhängigkeit von der Calciumkonzentration, Pflügers Arch. 273, 130–144 (1961).CrossRefGoogle Scholar
  31. 31.
    H. Lorkovic, Ist das fur die Kaliumkontraktur nötige Calcium an spezialisierte Lagen gebunden? Pflügers Arch. 272, 45 (1960).CrossRefGoogle Scholar
  32. 32.
    H. Lorkovic, Potassium contracture and calcium influx in frog’s skeletal muscle, Am. J. Physiol. 202, 440–444 (1962).Google Scholar
  33. 33.
    L. L. Costantin, The role of sodium current in the radial spread of contraction in frog muscle fibers, J. Gen. Physiol. 55, 703–715 (1970).CrossRefGoogle Scholar
  34. 34.
    H. Gonzales-Serratos, Inward spread of activation in vertebrate muscle fibres, J. Physiol. (London) 212, 777–799 (1971).Google Scholar
  35. 35.
    A. L. Hodgkin and P. Horowicz, Potassium contractures of single muscle fibres, J. Physiol. (London) 153, 386–402 (1960).Google Scholar
  36. 36.
    J. Zachar and D. Zacharová, Potassium contractures in single muscle fibres of the crayfish, J. Physiol. (London) 186, 596–618 (1966).Google Scholar
  37. 37.
    H. Lorkovic, Membrane potential and mechanical tension in white and red muscles of the rat, Am. J. Physiol. 212, 1044–1050 (1971).Google Scholar
  38. 38.
    C. Caputo, and M. Gimenez, Effects of external calcium deprivation on single muscle fibers, J. Gen. Physiol. 50, 2177–2195 (1967).CrossRefGoogle Scholar
  39. 39.
    H. Lorkovic, Extracellular calcium ions and potassium contractures in mammalian muscles, Comp. Biochem. Physiol. 22, 799–807 (1967).CrossRefGoogle Scholar
  40. 40.
    W. C. Buss and G. B. Frank, Calcium and excitation-contraction-coupling in mammalian skeletal muscle, Arch. Int. Pharmacodyn. 181, 15–26 (1969).Google Scholar
  41. 41.
    H. Sugi, Local activation of frog fibres with linearly rising currents, J. Physiol. (London) 199, 549–567 (1968).Google Scholar
  42. 42.
    G. B. Frank, Utilization of bound calcium in the action of caffeine and certain multivalent cations on skeletal muscle, J. Physiol. (London) 163, 254–268 (1962).Google Scholar
  43. 43.
    H. Lorković, Effects of some divalent cations on frog twitch muscles, Am. J. Physiol. 212, 623–628 (1967).Google Scholar
  44. 44.
    H. Lorković, The influence of ionic strength on potassium contractures and calcium movements in frog muscle, J. Gen. Physiol. 50, 883–891 (1967).CrossRefGoogle Scholar
  45. 45.
    M. Matsumura, The effects of metal ions and caffeine on electromechanical coupling in crayfish muscle fibers, Jpn. J. Physiol. 22, 71–83 (1972).CrossRefGoogle Scholar
  46. 46.
    D. Zacharová and J. Zachar, The influence of some bivalent cations on the electro-mechanical coupling in isolated muscle fibres of the crayfish, Fiziol. Zh. 57, 1331,1339 (1971).Google Scholar
  47. 47.
    H. Lorkovic and C. Edwards, The roles of calcium in excitation-contraction coupling in various muscles of the frog, mouse and barnacle, Am. Zool. 7, 615–622 (1967).Google Scholar
  48. 48.
    D. J. Aidley, The effects of strontium and other divalent cations on potassium contracture in a locust leg muscle, J. Physiol. (London) 177, 103–111 (1965).Google Scholar
  49. 49.
    A. M. Shanes, Calcium influx in frog Rectus abdominis muscle at rest and during potassium contracture, J. Cell. Comp. Physiol. 57, 193–202 (1961).CrossRefGoogle Scholar
  50. 50.
    R. Niedergerke, Movements of Ca in frog heart ventricles at rest and during contractures, J. Physiol. (London) 167, 515–550 (1963).Google Scholar
  51. 51.
    H. Gainer, The role of calcium in excitation-contraction coupling of lobster muscle, J. Gen. Physiol. 52, 88–110 (1968).CrossRefGoogle Scholar
  52. 52.
    C. Edwards, H. Lorkovic, and A. Weber, The effect of the replacement of calcium by strontium on excitation-contraction coupling in frog skeletal muscle, J. Physiol. (London) 186, 295–306 (1966).Google Scholar
  53. 53.
    P. C. Caldwell and G. Walster, Studies on the microinjection of various substances into crab muscle fibres, J. Physiol. (London) 169, 353–372 (1963).Google Scholar
  54. 54.
    M. Matsumura and H. Mashima, Contraction produced by intracellular injection of calcium, strontium, and barium in the single crayfish muscle fibers, Jpn. J. Physiol. 26, 145–157 (1976).CrossRefGoogle Scholar
  55. 55.
    S. K. B. Donaldson and W. G. L. Kerrick, Characterization of the effects of Mg2+ on Ca2 + and Sr2+-activated tension generation of skinned skeletal muscle fibers, J. Gen. Physiol. 66, 427–444 (1976).CrossRefGoogle Scholar
  56. 56.
    P. Busselen, Potassium chloride contractures in rabbit auricles: Interaction of Sr2+ and Ca2+, Arch. Int. Physiol. Biochem. 79, 809 (1971).Google Scholar
  57. 57.
    H. Lorkovic, Akkommodation der tonischen Skelettmuskeln des Frosches auf die kontrakturer-zeugenden Wirkungen von Kalium und Acetylcholin, Pflügers Arch. 278, 423–434 (1963).CrossRefGoogle Scholar
  58. 58.
    H. Lorković, Acetylcholine contractures of denervated muscles in sodium-free solutions, Am. J. Physiol. 219, 1496–1504 (1970).Google Scholar
  59. 59.
    H. Lorkovic, Antagonism between calcium and monovalent cations in depolarized denervated muscles, Am. J. Physiol. 222, 1427–1434 (1972).Google Scholar
  60. 60.
    H. Lorkovic, Effect of divalent cations on ACh contractures of depolarized denervated muscles, Am. J. Physiol. 226, 1286–1292 (1974).Google Scholar
  61. 61.
    Y. Muneoka, Calcium-dependent acetylcholine contracture of a molluscan catch muscle in sodium-free solution, Comp. Gen. Pharmacol. 4, 277–284 (1973).CrossRefGoogle Scholar
  62. 62.
    S. Hagiwara, Ca spike, Adv. Biophys. 4, 71–102 (1973).Google Scholar
  63. 63.
    R. L. Parsons and W. L. Nastuk, Activation on contractile system in depolarized skeletal muscle fibers, Am. J. Physiol. 217, 364–369 (1969).Google Scholar
  64. 64.
    N. Takeuchi, Effects of calcium on the conductance change of the end-plate membrane during the action of transmitter, J. Physiol. (London) 167, 141–155 (1963).Google Scholar
  65. 65.
    A. Weber and R. Herz, The relationship between caffeine contracture of intact muscle and the effect of caffeine on reticulum, J. Gen. Physiol. 52, 750–759 (1968).CrossRefGoogle Scholar
  66. 66.
    M. Morikawa and M. Tsuboi, Effect of potassium and caffeine on the contracture and oxygen uptake of rat soleus muscles, J. Physiol. Soc. Jpn. 36, 53–61 (1974).Google Scholar
  67. 67.
    F. Taga, I. Takayanagi, and K. Takagi, A possible mechanism for the occurrence of the non-specific potentiation in the denervated skeletal muscle of the rat, Jpn. J. Pharmacol. 22, 827–834 (1972).CrossRefGoogle Scholar
  68. 68.
    Y. Muneoka, Effects of some divalent cations, serotonin and procaine on the caffeine contracture of Mytilus edulis, Zool. Mag. 78, 127–133 (1969).Google Scholar
  69. 69.
    C. P. Bianchi and A. M. Shanes, Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture, J. Gen. Physiol. 42, 803–815 (1959).CrossRefGoogle Scholar
  70. 70.
    A. Sandow, Excitation-contraction coupling in skeletal muscle, Pharmacol. Rev. 17, 265–320 (1965).Google Scholar
  71. 71.
    C. P. Bianchi and T. C. Bolton, Effect of thiocyanate on radiocalcium uptake during potassium contracture of frog sartorius muscle, J. Pharmacol. Exp. Ther. 157, 456–463 (1966).Google Scholar
  72. 72.
    G. B. Weiss and C. P. Bianchi, The effect of potassium concentration on Ca45 uptake in frog sartorius muscle, J. Cell. Comp. Physiol. 65, 385–392 (1965).CrossRefGoogle Scholar
  73. 73.
    H. Lorkovic, The effect of pH on the mechanical activity of the frog toe muscle, J. Gen. Physiol. 50, 863–882 (1967).Google Scholar
  74. 74.
    D. A. Fischman and R. C. Swan, Nickel substitution for calcium in excitation-contraction coupling of skeletal muscle, J. Gen. Physiol. 50, 1709–1728 (1967).CrossRefGoogle Scholar
  75. 75.
    W. G. Van der Kloot and J. Glovsky, The uptake of Ca2+ and Sr2+ by fractions from lobster muscle, Comp. Biochem. Physiol. 15, 121–134 (1972).Google Scholar
  76. 76.
    P. Mermier and W. Hasselbach, Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum, Eur. J. Biochem. 69, 79–86 (1976).CrossRefGoogle Scholar
  77. 77.
    A. Weber, R. Herz, and I. Reiss, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345, 329–369 (1966).Google Scholar
  78. 78.
    M. Endo, Calcium release from the sarcoplasmic reticulum, Physiol. Rev. 57, 71–108 (1977).Google Scholar
  79. 79.
    P. Mermier and W. Hasselbach, The biphasic active transport of calcium by the fragmented sarcoplasmic reticulum as revealed by the flow dialysis method, Eur. J. Biochem. 64, 613–620 (1976).CrossRefGoogle Scholar
  80. 80.
    L. E. Ford and R. Podolsky, Force development and calcium movements in skinned muscle fibers, Fed. Proc. 27, 375 (1968).Google Scholar
  81. 81.
    M. Endo, M. Tanaka, and Y. Ogawa, Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres, Nature (London) 228, 34–36 (1970).CrossRefGoogle Scholar
  82. 82.
    Y. Tonomura, Muscle Proteins, Muscle Contraction and Cation Transport, University of Tokyo Press, Tokyo (1972).Google Scholar
  83. 83.
    J. C. Seidel and J. Gergely, Studies on myofibrillar adenosine triphosphatase with calcium-free adenosine triphosphate. I. The effect of ethylene diamine tetraacetate, calcium, magnesium and adenosine triphosphate, J. Biol. Chem. 238, 3648–3653 (1963).Google Scholar
  84. 84.
    S. Ebashi, A. Kodama, and F. Ebashi, Troponin. I. Preparation and physiological function, J. Biochem. (Tokyo) 64, 465–477 (1968).Google Scholar
  85. 85.
    I. Staprans, H. Takahashi, M. P. Russell, and S. Watanabe, Skeletal and cardiac troponins and their components, J. Biochem. (Tokyo) 72, 723–735 (1972).Google Scholar
  86. 86.
    W. Drabikowski, R. Dabrowska, and B. Barylko, Composition of cardiac muscle troponin, Rec. Adv. Stud. Cardiac Struct. Metab. 5, 245–252 (1975).Google Scholar
  87. 87.
    S. Ebashi, T. Masaki, and R. Tsukui, Cardiac contractile proteins, Adv. Cardiol. 12, 59–69 (1974).Google Scholar
  88. 88.
    G. Gebert, Mechanical reaction of the frog skeletal muscle to Ca++ and other divalent cations in the external solution, Pflügers Arch. 296, 222–233 (1967).CrossRefGoogle Scholar
  89. 89.
    O. D. Uchitel and H. Garcia, Muscle contraction during hyperpolarizing currents in the crab, J. Gen. Physiol. 63, 111–122 (1974).CrossRefGoogle Scholar
  90. 90.
    J. M. Russell and M. P. Blaustein, Calcium efflux from barnacle muscle fibers. Dependence on external cations, J. Gen. Physiol. 63, 144–167 (1974).CrossRefGoogle Scholar
  91. 91.
    W. G. Van der Kloot, The steps between depolarization and the increase in the respiration of frog skeletal muscle, J. Physiol. (London) 204, 551–569 (1969).Google Scholar
  92. 92.
    F. Fuchs, Ion exchange properties of the calcium receptor site of troponin, Biochim. Biophys. Acta 245, 221–229 (1971).CrossRefGoogle Scholar
  93. 93.
    P. Elze, The cation selectivity of calcium-binding structures of skeletal muscle. A physico-chemical interpretation as an ion-exchange process, Acta Biol. Med. Ger. 35, 15–22 (1976).Google Scholar
  94. 94.
    H. J. Kuhn, P. Heinl, M. C. Sawaya, and M. Ulbrich, The influence of magnesium and calcium ions on the force produced in rigor muscle, Experientia 29, 669–671 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Hrvoje Lorković
    • 1
  • Charles Edwards
    • 2
  1. 1.Department of Neurology, College of MedicineUniversity of IowaIowa CityUSA
  2. 2.Neurobiology Research CenterState University of New YorkAlbanyUSA

Personalised recommendations