Advertisement

The Relationship between Strontium and other Divalent Cations in the Process of Transmitter Release from Cholinergic Nerve Endings

  • E. M. Silinsky
  • A. M. Mellow

Abstract

It is well established at present that Ca2+ is responsible for mediating an enormous variety of intricate biological activities. In most systems studied, Sr2+ can serve as a simple, effective substitute for Ca2+ in supporting the particular biological behavior [e.g., Sr2+ can substitute for Ca2+ as a carrier of transmembrane current across excitable cells (1)].

Keywords

Divalent Cation Nerve Ending Motor Nerve Transmitter Release Alkaline Earth Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Reuter, Divalent cations as charge carriers in excitable membranes, Prog. Biophys. Mol. Biol. 26, 1–41 (1973).CrossRefGoogle Scholar
  2. 2.
    B. Katz, The Release of Neural Transmitter Substances, University Press, Liverpool (1969).Google Scholar
  3. 3.
    J. del Castillo and B. Katz, Quantal components of the end-plate potential, J. Physiol (London) 124, 560–573 (1954).Google Scholar
  4. 4.
    E. M. Silinsky, On the association between transmitter secretion and the release of adenine nucleotides from mammalian motor nerve terminals, J. Physiol. (London) 247, 145–162 (1975).Google Scholar
  5. 5.
    E. M. Silinsky, Evidence for specific adenosine receptors at cholinergic nerve endings. Br. J. Pharmacol. 70, in press (1981).Google Scholar
  6. 6.
    J. I. Hubbard, Microphysiology of vertebrate neuromuscular transmission, Physiol. Rev. 53, 674–723 (1973).Google Scholar
  7. 7.
    B. L. Ginsborg and D. H. Jenkinson, Transmission of impulses from nerve to muscle, in: Neuromuscular Junction, Handbook of Experimental Pharmacology (E. Zaimis, ed.), pp. 229–364, Springer-Verlag, Berlin, Heidelberg, New York (1976).Google Scholar
  8. 8.
    F. A. Dodge, Jr. and R. Rahamimoff, Co-operative action of Ca ions in transmitter release at the neuromuscular junction, J. Physiol. (London) 193, 419–432 (1967).Google Scholar
  9. 9.
    R. Miledi, Strontium as a substitute for calcium in the process of transmitter release at the neuromuscular junction, Nature (London) 212, 1233–1234 (1966).CrossRefGoogle Scholar
  10. 10.
    F. A. Dodge, Jr., R. Miledi, and R. Rahamimoff, Strontium and quantal release of transmitter at the neuromuscular junction, J. Physiol. (London) 200, 267–283 (1969).Google Scholar
  11. 11.
    U. Meiri and R. Rahamimoff, Activation of transmitter release by strontium and calcium ions at the neuromuscular junction, J. Physiol. (London) 215, 709–726 (1978).Google Scholar
  12. 12.
    E. M. Silinsky, Can barium support the release of acetylcholine by nerve impulses? Br. J. Pharmacol. 59, 215–217 (1977).Google Scholar
  13. 13.
    E. M. Silinsky, On the role of barium in supporting the asynchronous release of acetylcholine quanta by motor nerve impulses, J. Physiol. (London) 274, 157–171 (1978).Google Scholar
  14. 14.
    E. M. Silinsky, Enhancement by an antagonist of transmitter release from frog motor nerve terminals, Br. J. Pharmacol. 63, 485–493 (1978).Google Scholar
  15. 15.
    J. del Castillo and B. Katz, The effect of magnesium on the activity of motor nerve endings, J. Physiol. (London) 124, 553–559 (1954).Google Scholar
  16. 16.
    D. H. Jenkinson, The nature of the antagonism between calcium and magnesium ions at the neuromuscular junction, J. Physiol. (London) 138, 434–444 (1957).Google Scholar
  17. 17.
    U. Meiri and R. Rahamimoff, Neuromuscular transmission: Inhibition by manganese ions, Science 176, 308–309 (1972).CrossRefGoogle Scholar
  18. 18.
    R. J. Balnave and P. W. Gage, Inhibitory effects of manganese on transmitter release at neuromuscular junction of toad, Br. J. Pharmacol. 47, 339–350 (1973).Google Scholar
  19. 19.
    J. N. Weakly, The action of cobalt ions on neuromuscular transmission in the frog, J. Physiol. (London) 234, 597–612 (1973).Google Scholar
  20. 20.
    A. C. Crawford, The dependence of evoked transmitter release on external calcium ions at very low mean quantal contents, J. Physiol. (LondonI 240, 255–278 (1974).Google Scholar
  21. 21.
    E. M. Silinsky, An estimate of the equilibrium dissociation constant for calcium as an antagonist of evoked acetylcholine release: Implications for excitation-secretion coupling, Br. J. Pharmacol. 61, 691–693 (1977).Google Scholar
  22. 21.
    a. E. D. Kharasch, A. M. Mellow, and E. M. Silinsky, Intracellular magnesium does not antagonize calcium-dependent acetylcholine secretion. J. Physiol. (London), in press (1981).Google Scholar
  23. 22.
    J. del Castillo and B. Katz, Statistical factors involved in neuromuscular facilitation and depression, J. Physiol (London) 124, 574–585 (1954).Google Scholar
  24. 23.
    M. Braun, R. F. Schmidt, and M. Zimmermann, Facilitation at the frog neuromuscular junction during and after repetitive stimulation, Pflügers Arch. 287, 41–55 (1966).CrossRefGoogle Scholar
  25. 24.
    R. Miledi and R. Thies, Tetanic and post-tetanic rise in frequency of miniature end-plate potentials in low calcium solutions, J. Physiol. (London) 212, 245–251 (1971).Google Scholar
  26. 25.
    W. P. Hurlbut, H. B. Longnecker, and A. Mauro, Effects of calcium and magnesium on the frequency of miniature end-plate potentials during prolonged tetanization, J. Physiol. (London) 219, 17–38 (1971).Google Scholar
  27. 26.
    E. M. Silinsky, A. M. Mellow, and T. E. Phillips, Conventional calcium channel mediates asynchronous acetylcholine release by motor nerve impulses, Nature (London) 270, 528–530 (1977).CrossRefGoogle Scholar
  28. 27.
    A. M. Mellow and E. M. Silinsky, Interactions between strontium and calcium in the process of evoked transmitter release at the frog neuromuscular junction, Soc. Neurosci. 4, 372 (1978).Google Scholar
  29. 28.
    D. A. Haydon and S. B. Hladky, Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems, Q. R. Biophys. 5, 187–282 (1972).CrossRefGoogle Scholar
  30. 29.
    A. L. Hodgkin, The Conduction of the Nerve Impulse, Charles C Thomas, Springfield, Ill. (1964).Google Scholar
  31. 30.
    B. Katz and R. Miledi, Tetrodotoxin-resistant electric activity in presynaptic terminals, J. Physiol (London) 203, 459–487 (1969).Google Scholar
  32. 30a.
    D. M. J. Quastel, Excitation-secretion coupling at the mammalian neuromuscular junction, in: Sympatic Transmission and Neuronal Interaction, Raven Press, New York (1974).Google Scholar
  33. 31.
    J. H. Gaddum, Theories of drug antagonism, Pharmacol Rev. 9, 211–218 (1957).Google Scholar
  34. 32.
    R. P. Stephenson and R. B. Barlow, Concepts of drug action, quantatative pharmacology and biological assay, in: A Companion to Medical Studies (R. Passmore and J. S. Robson, eds.), Chapter 3, pp. 1–19, Blackwell, Oxford (1970).Google Scholar
  35. 33.
    E. M. McLachlan, The effects of strontium and barium ions at synapses in sympathetic ganglia, J. Physiol (London) 267, 497–518 (1977).Google Scholar
  36. 34.
    A. M. Mellow, T. E. Phillips, and E. M. Silinsky, On the conductance pathway traversed by strontium in mediating the asynchronous release of acetylcholine by motor nerve impulses, Br. J. Pharmacol. 63, 239–252 (1978).Google Scholar
  37. 35.
    R. V. Muller and A. Finkelstein, The electrostatic basis of Mg inhibition of transmitter release, Proc. Natl. Acad. Sci. USA 71, 923–926 (1974).CrossRefGoogle Scholar
  38. 36.
    H. S. Sherry, The ion exchange properties of zeolites, in: Ion Exchange II (M. Dekker, ed.) pp. 89–153, Academic Press, New York (1968).Google Scholar
  39. 37.
    J. M. Diamond and E. M. Wright, Biological membranes: The physical basis of ion and non-electrolyte selectivity, Annu. Rev. Physiol. 31, 581–646 (1969).CrossRefGoogle Scholar
  40. 38.
    R. Rahamimoff, A dual effect of calcium ions on neuromuscular facilitation, J. Physiol. (London) 195, 471–480 (1968).Google Scholar
  41. 39.
    R. Rahamimoff and Y. Yaari, Delayed release of transmitter at the frog neuromuscular junction, J. Physiol (London) 228, 241–257 (1973).Google Scholar
  42. 40.
    P. F. Baker, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol. 24, 177–213 (1972).CrossRefGoogle Scholar
  43. 41.
    B. C. Pressman, Properties of ionophores with broad range cation selectivity, Fed. Proc. 32, 1698–1703 (1973).Google Scholar
  44. 42.
    A. M. Mellow, Equivalence of Ca2+ and Sr2+ in transmitter release from K+-depolarized nerve terminals. Nature (London) 282, 84–85 (1979).CrossRefGoogle Scholar
  45. 43.
    H. Kita and W. Van der Kloot, Effects of the ionophore X-537A on acetylcholine release at the frog neuromuscular junction, J. Physiol. (London) 259, 177–198 (1976).Google Scholar
  46. 44.
    R. Llinas, I. Z. Steinberg, and K. Walton, Presynaptic calcium currents and their relation to synaptic transmission: Voltage clamp study in squid giant synapse and theoretical model for the calcium gate, Proc. Natl Acad. Sci. USA 73, 2918–2922 (1976).CrossRefGoogle Scholar
  47. 45.
    R. R. Llinas, Calcium and transmitter release in squid synapse, in: Approaches in the Cell Biology of Neurons (W. M. Cowan, and J. A. Ferrendelli, eds.), Society for Neuroscience, Rockville, Md., (1977).Google Scholar
  48. 46.
    C. S. Lewis, The Silver Chair, Macmillan, New York, (1953).Google Scholar
  49. 47.
    E. M. McLachlan, Electrophysiological evidence for the second store of ACh in preganglionic nerve terminals, Brain Res. 98, 373–376 (1975).CrossRefGoogle Scholar
  50. 48.
    A. L. Lehninger, Mitochondria and calcium ion transport, Biochem. J. 119, 129–138 (1970).Google Scholar
  51. 49.
    I. M. Glagoleva, E. A. Liberman, and Z. Kh-M. Khashaev, Effect of uncouplers of oxidative phosphorylation on output of acetylcholine from nerve endings, Biofizika 15, 76–83 (1970).Google Scholar
  52. 50.
    A. L. Mackay, A Selection of Scientific Quotations, Institute of Physics, Bristol, London (1977).Google Scholar
  53. 51.
    E. M. Silinsky, A reevaluation of the behaviour of divalent cation agonists at motor nerve endings. Br. J. Pharmacol 61, 594 P (1980).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • E. M. Silinsky
    • 1
  • A. M. Mellow
    • 1
  1. 1.Department of PharmacologyNorthwestern University Medical SchoolChicagoUSA

Personalised recommendations