Advertisement

Divalent Metal Ions and the Regulation of Pyruvate Dehydrogenase

  • David L. Severson
  • Richard M. Denton

Abstract

Pyruvate dehydrogenase catalyzes the irreversible decarboxylation of pyruvate to form acetyl-CoA. The enzyme is an exclusively mitochondrial multienzyme complex with a molecular weight approaching 10 million. The reaction sequence and composition of the complex is shown in Fig. 1. The enzyme components and general architecture of the complex from bovine heart and kidney have been determined largely by the work of Reed and his co-workers (1–3). The multienzyme complex can be separated into three enzyme activities—pyruvate decarboxylase, dihydrolipoate transacetylase, and dihydrolipoate dehydrogenase. The core of the complex is composed of transacetylase (E2) subunits to which are bound both the pyrivate decarboxylase (E1;α 2 β 2) subunits and those of the dihydrolipoyl dehydrogenase (E3).

Keywords

Pyruvate Dehydrogenase Pyruvate Dehydrogenase Complex Pyruvate Dehydrogenase Kinase Multienzyme Complex Exchangeable Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. C. Linn, J. W. Pelley, F. H. Pettit, et al., Purification and properties of the component enzymes of the pyruvate dehydrogenase complexes from bovine kidney and heart, Arch. Biochem. Biophys. 148, 327–342 (1972).CrossRefGoogle Scholar
  2. 2.
    C. R. Barrera, G. Namihara, L. Hamilton, et al., Studies on the subunit structure of the pyruvate dehydrogenase complexes from bovine kidney and heart, Arch. Biochem. Biophys. 148, 343–358 (1972).CrossRefGoogle Scholar
  3. 3.
    T. E. Roche and L. J. Reed, Function of the non-identical subunits of mammalian pyruvate dehydrogenase, Biochem. Biophys. Res. Commun. 48, 840–846 (1972).CrossRefGoogle Scholar
  4. 4.
    P. B. Garland and P. J. Randle, Control of pyruvate dehyrogenase in the perfused rat heart by the intracellular concentration of acetyl CoA, Biochem. J. 91, 6C-7C (1964).Google Scholar
  5. 5.
    T. C. Linn, F. H. Pettit, F. Hucho, et al., Comparative studies of regulatory properties of the pyruvate dehydrogenase complexes from kidney, heart and liver mitochondria, Proc. Natl. Acad. Sci. USA 64, 227–234 (1969).CrossRefGoogle Scholar
  6. 6.
    T. C. Linn, F. H. Pettit, and L. J. Reed, Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation, Proc. Natl. Acad. Sci. USA 62, 234–241 (1969).CrossRefGoogle Scholar
  7. 7.
    R. M. Denton, P. J. Randle, B. J. Bridges, et al., Regulation of mammalian pyruvate dehydrogenase, Mol. Cell. Biochem. 9, 27–53 (1975).CrossRefGoogle Scholar
  8. 8.
    R. M. Denton, P. J. Randle, and B. R. Martin, Stimulation by calcium ions of pyruvate dehydrogenase phosphate phosphatase, Biochem. J. 128, 161–163 (1972).Google Scholar
  9. 9.
    D. L. Severson, R. M. Denton, H. T. Pask, et al., Calcium and magnesium ions as effectors of adipose tissue pyruvate dehydrogenase phosphate phosphatase, Biochem. J. 140, 225–237 (1974).Google Scholar
  10. 10.
    P. J. Randle, R. M. Denton, H. T. Pask, et al., Calcium ions and the regulation of pyruvate dehydrogenase, Biochem. Soc. Symp. 39, 75–87 (1974).Google Scholar
  11. 11.
    R. H. Cooper, R. M. Denton, H. T. Pask, et al., Regulation of mammalian pyruvate dehydrogenases in: Metabolic Interconversion of Enzymes (E. H. Fisher et al., eds.), pp. 107–116, Springer-Verlag, New York, (1974).Google Scholar
  12. 12.
    F. Hucho, D. D. Randall, T. E. Roche, et al., Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart, Arch. Biochem. Biophys. 151, 328–340 (1972).CrossRefGoogle Scholar
  13. 13.
    R. H. Cooper, P. J. Randle and R. M. Denton, Regulation of heart muscle pyruvate dehydrogenase kinase, Biochem. J. 143, 625–641 (1974).Google Scholar
  14. 14.
    A. L. Kerbey, P. J. Randle, R. H. Cooper et al., Regulation of pyruvate dehydrogenase in rat heart: Mechanisms of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: Role of CoA, acetyl CoA, NADH and NAD, Biochem. J. 154, 327–348 (1976).Google Scholar
  15. 15.
    F. H. Pettit, J. W. Pelley, and L. J. Reed, Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl CoA/CoA and NADH/NAD ratios, Biochem. Biophys. Res. Commun. 65, 575–582 (1975).CrossRefGoogle Scholar
  16. 16.
    F. H. Pettit, T. E. Roche, and L. J. Reed, Function of calcium ions in pyruvate dehydrogenase phosphatase activity, Biochem. Biophys. Res. Commun. 49, 563–571 (1972).CrossRefGoogle Scholar
  17. 17.
    R. L. Jungas, Hormonal regulation of pyruvate dehydrogenase, Metabolism 20, 43–53 (1971).CrossRefGoogle Scholar
  18. 18.
    H. G. Coore, R. M. Denton, B. R. Martin, et al., Regulation of adipose tissue pyruvate dehydrogenase by insulin and other hormones, Biochem. J. 125, 115–127 (1971).Google Scholar
  19. 19.
    L. Weiss, G. Loffler, A. Schirmann, et al., Control of pyruvate dehydrogenase interconversion in adipose tissue by insulin, FEBS Lett. 15, 229–231 (1971).CrossRefGoogle Scholar
  20. 20.
    B. R. Martin, R. M. Denton, H. T. Pask, et al., Mechanisms regulating adipose tissue pyruvate dehydrogenase, Biochem. J. 129, 763–773 (1972).Google Scholar
  21. 21.
    T. Clausen and B. R. Martin, The effect of insulin on the washout of [45Ca]-calcium from adipocytes and soleus muscle of the rat, Biochem. J. 164, 251–255 (1977).Google Scholar
  22. 22.
    A. H. Kissebah, P. Clark, N. Vydelingum, et al., The role of calcium in insulin action. III. Calcium distribution in fat cells; its kinetics and the effects of adrenaline, insulin and procaine-HC1, Eur. J. Clin. Invest. 5, 339–349 (1975).Google Scholar
  23. 23.
    D. L. Severson, R. M. Denton, B. J. Bridges, et al., Exchangeable and total calcium pools in mitochondria of rat epididymal fat-pads and isolated fat-cells. Biochem. J. 153, 209–223 (1976).Google Scholar
  24. 24.
    W. A. Hughes and R. M. Denton, Incorporation of 32Pi into pyruvate dehydrogenase phosphate in mitochondria from control and insulin-treated adipose tissue. Nature (London) 264, 471–473 (1976).CrossRefGoogle Scholar
  25. 25.
    D. Stansbie, R. M. Denton, B. J. Bridges, et al., Regulation of pyruvate dehydrogenase and pyruvate dehydrogenase phosphate phosphatase activity in rat epididymal fat-pads: effects of of starvation, alloxandiabetes, and high-fat diet. Biochem. J. 154, 225–236 (1976).Google Scholar
  26. 26.
    M. Crompton, M. Capano, and E. Carafoli, The sodium-induced efflux of calcium from heart mitochondria: a possible mechanism for the regulation of mitochondrial calcium. Eur. J. Biochem. 69, 453–462 (1976).CrossRefGoogle Scholar
  27. 27.
    J. Moyle and P. Mitchell, Electric charge stiochiometry of calcium translocation in rat liver mitochondria. FEBS Lett. 73, 131–136(1977).CrossRefGoogle Scholar
  28. 28.
    R. M. Denton, W. H. Hughes, B. J. Bridges, et al., Regulation of mammalian pyruvate dehydrogenase by hormones, in: Hormones and Cell Metabolism (J. Nunez and J. Dumont, eds.) voi II, pp. 191–208, North Holland Publishing Co. (1978).Google Scholar
  29. 29.
    R. M. Denton and W. H. Hughes, Pyruvate dehydrogenase and the hormonal regulation of fat synthesis in mammalian tissues. Int. J. Biochem. 9, 545–552 (1978).CrossRefGoogle Scholar
  30. 30.
    R. M. Denton, D. A. Richards, and J. G. Chin, Calcium ions and the regulation of NAD+-linked isocitrate dehydrogenase from the mitochondria of rat heart and other tissues. Biochem. J. 176, 899–906 (1978).Google Scholar
  31. 31.
    J. G. McCormack and R. M. Denton, The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem. J. 180, 533–544 (1979).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • David L. Severson
    • 1
  • Richard M. Denton
    • 2
  1. 1.Department of Pharmacology and Therapeutics, Faculty of MedicineUniversity of CalgaryCalgaryCanada
  2. 2.Department of BiochemistryUniversity of Bristol Medical SchoolBristolUK

Personalised recommendations