Strontium and Animal Mitochondria: The Interaction of Strontium Ions with Mitochondria in Animal Tissues

  • B. A. Tashmukhamedov
  • A. I. Gagel’gans


At the beginning of the 1960s it was discovered that, in addition to oxidative phosphorylation, one of the energy-linked reactions that takes place in mitochondria is the accumulation of Ca2+ ions (1–3). Further investigation demonstrated the ability of isolated mitochondria to accumulate significant quantities of Sr2+ (4–9), Mn2+ (10–12), Ba2+ (6,12), and, in the case of mitochondria of the heart, Mg2+ ions as well (13). Because uncoupling agents and respiratory inhibitors affect the transport of divalent cations to the same extent as they affect oxidative phosphorylation, it was concluded that both processes are maintained by a single unit or a single condition that is generated in the mitochondria (2,14). As a result of investigations carried out in several laboratories (2,15–17), it was shown that the mitochondrial transport of divalent cations may be described within the framework of Mitchell’s chemiosmotic theory: the accumulated ions are distributed according to the electrochemical potential generated in the internal membrane by the respiratory chain or in H+-ATPase. In any case, the elucidation of particulars of the transport of divalent cations has assisted in developing the current concept of the mechanism by which energy is transformed in the mitochondria.


Sarcoplasmic Reticulum Divalent Cation Internal Membrane Mitochondrial Structure Calcium Pump 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. D. Vasington and J. V. Murphy, Ca2+ uptake by rat kidney mitochondria and its dependence on respiration and phosphorylation, J. Biol. Chem. 237, 2670–2677 (1962).Google Scholar
  2. 2.
    A. L. Lehninger, Mitochondria and calcium ion transport, Biochem. J. 119, 129–138 (1970).Google Scholar
  3. 3.
    A. L. Lehninger, The coupling of Ca2+ transport to electron transport in mitochondria, in: The Molecular Basis of Electron Transport, pp. 133–151, Academic Press, New York, London (1972).Google Scholar
  4. 4.
    F. R. Mraz, Calcium and strontium uptake by rat liver and kidney mitochondria, Proc. Soc. Exp. Biol. Med., 111, 429–431 (1962).Google Scholar
  5. 5.
    E. Carafoli, S. Weiland and A. L. Lehninger, Active accumulation of Sr2+ by rat-liver mitochondria, I. General features, Biochim. Biophys. Acta, 97, 88–98 (1965).CrossRefGoogle Scholar
  6. 6.
    E. Carafoli, Active accumulation of Sr2+ by rat-liver mitochondria. II. Competition between Ca2+ and Sr2+, Biochim. Biophys. Acta 97, 99–106 (1965).CrossRefGoogle Scholar
  7. 7.
    E. Carafoli, Active accumulation of Sr2+ by rat-liver mitochondria. III. Stimulation of respiration by Sr2+ and its stoichiometry, Biochim. Biophys. Acta 97, 107–117 (1965).CrossRefGoogle Scholar
  8. 8.
    W. G. Van der Kloot and J. Glovsky, The uptake of Ca2+ and Sr2+ by the fractions from Lobster muscle, Comp. Biochem. Physiol. 15, 547–565 (1965).CrossRefGoogle Scholar
  9. 9.
    A. I. Caplan and E. Carafoli, The effect of Sr2+ on swelling and ATP-linked contraction of mitochondria, Biochim. Biophys. Acta 104, 317–319 (1965).CrossRefGoogle Scholar
  10. 10.
    J. B. Chappell, M. Cohn, and G. D. Greville, The accumulation of divalent ions by isolated mitochondria, in: Energy-linked Functions of Mitochondria (B. Chance, ed.), pp. 291–245, Academic Press, New York (1963).Google Scholar
  11. 11.
    B. Chance and L. Mela, Calcium and manganese interactions in mitochondrial ion accumulation, Biochemistry, 5, 3220–3223 (1966).CrossRefGoogle Scholar
  12. 12.
    Z. Drahota, P. Gazzetti, E. Carafoli, et al., A comparison of the effects of different divalent cations on a number of mitochondrial reactions linked to ion translocation, Arch. Biochem. Biophys., 130, 267–271 (1969).CrossRefGoogle Scholar
  13. 13.
    G. P. Brierley, E. Murer, E. Bachmann, et al., Studies on ion transport. II. The accumulation of inorganic phosphate and magnesium ions by heart mitochondria, J. Biol. Chem. 238, 3482–3489 (1963).Google Scholar
  14. 14.
    B. Chance, The energy-linked reaction of calcium with mitochondria, J. Biol. Chem., 240, 2729–2748 (1965).Google Scholar
  15. 15.
    P. Mitchel, Chemiosmotic Coupling in oxidative and photosynthetic phosphorylation, Glynn Research Bodmin, 1966.Google Scholar
  16. 16.
    M.J. Selwyn, A. P. Dawson, and S. J. Dunnett, Calcium transport in mitochondria, FEBS Lett. 10, 1–5 (1970).CrossRefGoogle Scholar
  17. 17.
    V. P. Skulachev, The Energy Transformation in Biomembranes, S. E. Severin, ed.) Nauka Press, Moscow (1972).Google Scholar
  18. 18.
    E. Carafoli, Mitochondrial uptake of calcium ions and the regulation of cell function, Biochem. Soc. Symp. 39, 89–109 (1974).Google Scholar
  19. 19.
    E. Carafoli, The interaction of Ca2+ with mitochondria, with special reference to the structural role of Ca2+ in mitochondrial and other membranes, Mol. Cell. Biochem. 8, 133–140 (1975).CrossRefGoogle Scholar
  20. 20.
    H. Rasmussen, Mitochondrial ion transport: Mechanism and physiological significance, Fed. Proc. 25, 903–911 (1966).Google Scholar
  21. 21.
    L. Yu. Kudzina, A. I. Lukjanenko, V. K. Rotary, et al., Investigation of Ca2+ transporting system of mitochondria on bilayer lipid membranes, Biofizika 22, 362–364 (1977).Google Scholar
  22. 22.
    A. V. Gylkhandanyan, Yu. V. Evtodienko, A. M. Zhabotinsky, et al., Continuous Sr2+-induced oscillations of the ionic fluxes in mitochondria, FEBS Lett. 66, 44–47 (1976).CrossRefGoogle Scholar
  23. 23.
    E. L. Kholmuchamedov and A. V. Gulkhandanyan, The ions movement through mitochondrial membrane in oscillatory regime in: Biochemistry of Mitochondria, p. 147, Nauka, Moscow (1976).Google Scholar
  24. 24.
    C. L. Moore, Mechanism of mitochondrial ion transport, in Metabolic Pathways. Metabolic Transport (L. E. Hokin, ed.), Vol. 6, pp. 573–626, Academic Press, New York (1972).Google Scholar
  25. 25.
    G. F. Azzone, T. Pozzan, S. Massary, et al., H+/site ratio and steady state distribution of divalent cations in mitochondria, FEBS Lett. 78, 21–24 (1977).CrossRefGoogle Scholar
  26. 26.
    J. Moyle and P. Mitchell, Electric charge stoichiometry of calcium translocation in rat liver mitochondria, FEBS Lett. 73, 131–136(1977).CrossRefGoogle Scholar
  27. 27.
    E. A. Liberman and V. P. Skulachev, Conversion of biomembrane-produced energy into electric form. IV. General discussion, Biochim, Biophys. Acta 216, 30–42 (1970).CrossRefGoogle Scholar
  28. 28.
    V. P. Sculachev, Energy transformations in the respiratory chain, Curr. Topics Bioenerg. 4, 127–190 (1971).Google Scholar
  29. 29.
    J. B. Chappell and A. R. Crofts, Ion transport and reversible volume changes of isolated mitochondria, in: Regulation of Metabolic Processes in Mitochondria, (J. M. Tager et al., eds.), Vol. 7, p. 293, BBA Library, Elsevier, Amsterdam, 1966.Google Scholar
  30. 30.
    A. Scarpa and G. F. Azzone, The mechanism of ion translocation in mitochondria. 4. Coupling of K+ effect with Ca2+ uptake, Eur. J. Biochem. 12, 328–335 (1970).CrossRefGoogle Scholar
  31. 31.
    L. Mela, Interactions of La3+ and local anesthetic drugs with mitochondrial Ca2+ and Mn2+ uptake, Arch. Biochem. Biophys. 123, 286–293 (1968).CrossRefGoogle Scholar
  32. 32.
    C. L. Moore, Specific inhibition of mitochondrial Ca2+ transport by ruthenium red, Biochem. Biophys. Res. Commun., 42, 298–305 (1971).CrossRefGoogle Scholar
  33. 33.
    B. A. Tashmukhamedov, A. I. Gagelgans, Kh. Mamatkulov, et al., Inhibition of Ca2+ transport in mitochondria by selective blockade of membrane mucopolysaccharides by hexamine cobaltichloride, FEBS Lett. 28, 239–242 (1972).CrossRefGoogle Scholar
  34. 34.
    J. W. Greenawalt and E. Carafoli, Electron microscope studies on the active accumulation of Sr++ by rat-liver mitochondria, J. Cell Biol. 29, 37–61 (1966).CrossRefGoogle Scholar
  35. 35.
    B. A. Tashmukhamedov and A. I. Gagelgans, The active transport of ions through the biological membranes, (Ya. K. Tuzakulov, ed.) Fan, Tashkent (1973).Google Scholar
  36. 36.
    A. L. Gear, C. S. Rossi, B. Reynafarje, et al., Acid-base exchanges in mitochondria and suspending medium during respiration-linked accumulation of bivalent cations, J. Biol. Chem. 242, 3403–3413 (1967).Google Scholar
  37. 37.
    J. Moyle and P. Mitchell, The lanthanide-sensitive calcium phosphate porter of rat liver mitochondria, FEBS Lett. 77, 136–140(1977).CrossRefGoogle Scholar
  38. 38.
    A. V. Somlyo and A. P. Somlyo, Strontium accumulation by sarcoplasmic reticulum and mitochondria in vascular smooth muscle, Science 174, 955–958 (1971).CrossRefGoogle Scholar
  39. 39.
    A. P. Somlyo, A. V. Somlyo, C. E. Devine, et al., Electron microscopy and electron probe analysis of mitochondrial cation accumulation in smooth muscle, J. Cell. Biol. 61, 723–742 (1974).CrossRefGoogle Scholar
  40. 40.
    V. I. Sorokovoy and Ju. A. Vladimirov, The damage of mitochondria by anoxia, in: Molecular Pathology of Membrane Structures, Biofizika, 5, 11–55 (1975).Google Scholar
  41. 41.
    G. L. Scherphof, Antagonistic effects of Ca2+ ions and local anesthetics on phospholipase activities; in: Abstracts of papers presented at the Symposium Calcium Binding Proteins, Jablonna, 1973.Google Scholar
  42. 42.
    A. Scarpa and J. G. Lindsay, Maintenance of energy-linked functions of rat liver mitochondria aged in the presence of nupercaine, Eur. J. Biochem. 27, 401–407 (1972).CrossRefGoogle Scholar
  43. 43.
    A. R. Crofts and J. B. Chappell, Calcium ion accumulation and volume changes of isolated liver mitochondria. Reversal of calcium ion-induced swelling, Biochem. J. 95, 387–392 (1965).Google Scholar
  44. 44.
    W. A. Pieterson, J. J. Volwerk, and G. H. de Haas, Interaction of phospholipase A2 and its zymogen with divalent metal ions, Biochemistry 13, 1439–1445 (1974).CrossRefGoogle Scholar
  45. 45.
    P. N. Strong, J. Goerke, St. G. Oberg et al., B-bungarotoxin, a presynaptic toxin with enzymatic activity, Proc. Natl Acad. Sci. USA 73, 178–182 (1976).CrossRefGoogle Scholar
  46. 46.
    B. A. Tashmukhamedov and A. I. Gagelgans, On the oscillatory character of H+ efflux from mitochondria during strontium accumulation, Biofizika 15, 443–446 (1970).Google Scholar
  47. 47.
    E. Carafoli, R. L. Gamble, and A. L. Lehninger, Rebounds and oscillations in respiration-linked movements of Ca2+ and H+ in rat liver mitochondria, J. Biol. Chem. 241, 2644–2652 (1966).Google Scholar
  48. 48.
    B. Chance and T. Yoshioka, Sustained oscillations of ionic constituents of mitochondria, Arch. Biochem. Biophys. 117, 451–465 (1966).CrossRefGoogle Scholar
  49. 49.
    L. Packer, K. Utsumi and M. G. Mustafa, Oscillatory states of mitochondria. I. Electron and energy transfer pathways, Arch. Biochem. Biophys., 117, 381–393 (1966).CrossRefGoogle Scholar
  50. 50.
    K. Utsumi and L. Packer, Oscillatory states of mitochondria. II. Factors controlling period and amplitude, Arch. Biochem. Biophys., 120, 404–412 (1967).CrossRefGoogle Scholar
  51. 51.
    F. D. Vasington, Accumulation of Ca++and Sr++ by rat-liver mitochondria: preferential loss of the adenosine triphosphate-dependent mechanism for Ca++ accumulation, Biochim. Biophys. Acta 113, 414–416 (1966).Google Scholar
  52. 52.
    A. L. Lehninger and E. Carafoli, The interaction of La3+ with mitochondria in relation to respiration coupled Ca2+ transport, Arch. Biochem. Biophys. 143, 506–515 (1971).CrossRefGoogle Scholar
  53. 53.
    H. Vainio, L. Mela, and B. Chance, Energy dependent bivalent cation translocation in rat liver mitochondria, Eur. J. Biochem. 12 387–391 (1970).CrossRefGoogle Scholar
  54. 54.
    K. C. Reed and F. L. Bygrave, A kinetic study of mitochondrial calcium transport, Biochem. J. 55, 497–504 (1975).Google Scholar
  55. 55.
    A. Vinogradov and A. Scarpa, The initial calcium uptake by rat liver mitochondria, J. Biol. Chem. 248, 5527–5531 (1973).Google Scholar
  56. 56.
    G. M. Heaton and D. G. Nicholls, The calcium conductance of the inner membrane of rat liver mitochondria and the determination of the Calcium electrochemical gradient, Biochem, J. 156, 635–646 (1976).Google Scholar
  57. 57.
    J. V. Lettvin, W. F. Pickard, W. S. McCulloch, et al., A theory of passive ion flux through axon membranes, Nature (London) 202, 1338–1339 (1964).CrossRefGoogle Scholar
  58. 58.
    F. D. Vasington, P. Gazzotti, R. Tiozzo, et al., The effect of ruthenium red on Ca2+ transport and respiration in rat liver mitochondria, Biochim. Biophys. Acta 256, 43–54 (1972).CrossRefGoogle Scholar
  59. 59.
    K. C. Reed and F. L. Bygrave, The inhibition of mitochondrial calcium transport by lanthanides and ruthenium red, Biochem. J. 140, 143–155 (1974).Google Scholar
  60. 60.
    K. C. Reed and F. L. Bygrave, A low molecular weight ruthenium complex inhibitory to mitochondrial Ca2+ transport, FEBS Lett. 46, 109–114 (1974).CrossRefGoogle Scholar
  61. 61.
    G. R. Ash and F. L. Bygrave, Ruthenium red as a probe in assessing the potential of mitochondria to control intracellular calcium in liver, FEBS Lett. 78, 166–168 (1977).CrossRefGoogle Scholar
  62. 62.
    S. Schaffer, B. Safer, and J. R. Williamson, Investigation of the role of mitochondria in the cardiac contraction-relaxation cycle, FEBS Lett. 23, 125–130 (1972).CrossRefGoogle Scholar
  63. 63.
    D. M. Taylor, The role of oxidative phosphorylation in the sorption from the gastro-intestinal tract in: Strontium Metabolism (J. M. A. Lenihou, J. F. Uoutit, and J. H. Martin, eds.), Academic Press, New York (1967) (translated from English by Atomizdat, Moscow, 1971). pp. 175–179.Google Scholar
  64. 64.
    A. Weber, R. Herz, and I. Reiss, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345, 329–369 (1966).Google Scholar
  65. 65.
    A. Martonosi, Transport of calcium by the sarcoplasmic reticulum, in: Metabolic Pathways, Vol. 6: Metabolic Transport, (L. E. Hokin) pp. 317–349, Academic Press, New York (1972).Google Scholar
  66. 66.
    D. H. MacLennan and P. C. Holland, Calcium transport in sarcoplasmic reticulum, Annu. Rev. Biophys. Bioenerg. 4, 377–404 (1975).CrossRefGoogle Scholar
  67. 67.
    A. E. Shamoo and D. A. Goldstein, Isolation of ionophores from ion transport systems and their role in energy transduction, Biochim. Biophys. Acta, 472, 13–55 (1977).Google Scholar
  68. 68.
    E. Racker, Reconstitution of a calcium pump with phospholipids and a purified Ca++-adenosine triphosphatase from sarcoplasmic reticulum, J. Biol. Chem. 247, 8198–8200 (1972).Google Scholar
  69. 69.
    P. Mermier and W. Hasselbach, Comparison between Strontium and calcium uptake by the fragmented sarcoplasmic reticulum, Eur. J. Biochem. 69, 79–86 (1976).CrossRefGoogle Scholar
  70. 70.
    Sh. Yamada and Y. Tonomura, Reaction mechanism of the Ca-dependent ATPase of SR from skeletal muscle. VII. Recognition and release of Ca2+ ions, J. Biochem. 72, 417–425 (1972).Google Scholar
  71. 71.
    E. Carafoli, In vivo effect of uncoupling agents on the incorporation of calcium and strontium into mitochondria and other subcellular fractions of rat liver, J. Gen. Physiol. 50, 1849–1864 (1967).CrossRefGoogle Scholar
  72. 72.
    P. Patriarca and E. Carafoli, A study of the intracellular transport of calcium in rat heart, J. Cell. Physiol. 72, 29–37 (1969).CrossRefGoogle Scholar
  73. 73.
    E. Carafoli, P. Patriarca, and C. S. Rossi, A comparative study of the role of mitochondria and the sarcoplasmic reticulum in the uptake and release of Ca2+ by the rat diaphragms, J. Cell. Physiol. 74, 17–29 (1969).CrossRefGoogle Scholar
  74. 74.
    E. J. Olson and R. J. Cazort, Active calcium and strontium transport in human erythrocyte ghosts, J. Gen. Physiol. 53, 311–322 (1969).CrossRefGoogle Scholar
  75. 75.
    P. Wins and E. Schoffeniels, Possible involvement of electron transfer reactions in the (Mg + Ca)-dependent ATPase activity of red cell ghosts, Life Sci. 7, 673–681 (1968).CrossRefGoogle Scholar
  76. 76.
    C. A. Tyson, H. V. Zande, and D. E. Green, Phospholipids as ionophores, J. Biol. Chem. 251, 1326–1332 (1976).Google Scholar
  77. 77.
    A. Gomez-Puyou, M. T. de Gomez-Puoyu, G. Becker, et al., An insoluble Ca2+-binding factor from rat liver mitochondria, Biochem. Biophys. Res. Commun. 47, 814–819 (1972).CrossRefGoogle Scholar
  78. 78.
    E. Panfili, G. Sandri and G. L. Sottocasa, Some properties of an isolated glycoprotein possibly related to calcium transport in mitochondria, Acta Vit. Enzymol. 28, 323–330 (1974).Google Scholar
  79. 79.
    G. Sottocasa, G. Sandri, E. Panfili, et al., Isolation of a soluble Ca2+ binding glycoprotein from ox liver mitochondria, Biochem. Biophys. Res. Commun. 47, 808–813 (1972).CrossRefGoogle Scholar
  80. 80.
    E. Panfili, G. Sandri, G. L. Sottocasa, et al., Specific inhibition of mitochondrial Ca2+ transport by antibodies directed to the Ca2+-binding glycoprotein, Nature, (London) N. 5582, 185–186 (1976).CrossRefGoogle Scholar
  81. 81.
    G. Prestipino, D. Ceccarelli, F. Conti, et al., Interactions of a mitochondrial Ca2+-binding glycoprotein with lipid bilayer membranes, FEBS Lett. 45, 99–103 (1974).CrossRefGoogle Scholar
  82. 82.
    G. A. Blondin, Isolation of divalent cation ionophore from beef heart mitochondria, Biochem. Biophys. Res. Commun. 56, 97–105 (1974).CrossRefGoogle Scholar
  83. 83.
    G. A. Blondin, Isolation, properties, and structural features of divalent cation ionophors derived from beef heart mitochondria, Ann. N. Y. Acad. Sci. 264, 98–111 (1975).CrossRefGoogle Scholar
  84. 84.
    E. M. Makhmudova, A. I. Gagelgans, U. Z. Mirkhodzhaev and B. A. Tashmukhamedov, Study of the effect of mitochondrial ionophore of bivalent cations on bilayer phospholipid membranes, Biofizika 20, 225–227 (1975).Google Scholar
  85. 85.
    N. E. L. Saris, A model of mitochondrial calcium translocation with cardiolipin as a carrier, in: Biochemistry and Biophysics of Mitochondrial Membranes G. F. Azzone, E. Carafoli, A. L. Lehninger, E. Quagliarello, and N. Siliplandi, eds.), pp. 641–652, Academic Press, London (1972).Google Scholar
  86. 86.
    A. E. Shamoo and D. H. MacLehnan, Ca2+-dependent and -selective ionophore as part of the Ca++ + Mg++-dependent Adenosinetriphosphatase of sarcoplasmic reticulum, Proc. Natl. Acad. Sci. USA 71, 3522–3526 (1974).CrossRefGoogle Scholar
  87. 87.
    A. H. Caswell and B. C. Pressman, Kinetics of transport of divalent cations across sarcoplasmic reticulum vesicles by ionophores, Biochem. Biophys. Res. Commun. 49, 292–298 (1972).CrossRefGoogle Scholar
  88. 88.
    B. A. Tashmukhamedov, A. I. Gagelgans, E. M. Makhmudova, et al., Investigation of membrane divalent cation ionophores from mitochondria and sarcoplasmic reticulum, in: Vth Proceedings of the International Biophysics Congress, Copenhagen, Denmark, p. 174 (1975).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • B. A. Tashmukhamedov
    • 1
  • A. I. Gagel’gans
    • 1
  1. 1.Institute of BiochemistryThe Uzbek SSR Academy of SciencesTashkentU.S.S.R.

Personalised recommendations