Transmembrane Strontium Movements and Strontium-Induced Changes in Membrane Cation Permeability in Nonexcitable Cell Membranes

  • Hartmut Porzig


Recent studies on the membrane transfer of Sr2+ and on the effects of Sr2+ on membrane permeability were frequently motivated by the similarity of Sr2+ with Ca2+ and by a still rising interest in the cellular actions of Ca2+. Sr2+ can replace Ca2+ in many, but not all, biological actions. In biological membranes most of the Ca2+-reactive sites involved in Ca2+ transport mechanisms or in the regulation of passive membrane permeability can be subdivided into two types of different Ca2+ selectivity: There is a group of low selectivity sites at which Mg2+ and other divalent cations will substitute for Ca2+ and a group of high selectivity sites, where Mg2+ will have either no effect or will antagonize the action of Ca2+


Divalent Cation Salivary Gland Cell Transport Site Excitable Tissue Squid Axon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. D. Gillard, The simple chemistry of calcium and its relevance to biological systems, in: Calcium and Cellular Function (A. W. Cuthbert, ed.), pp. 3–9, Macmillan, London (1970).Google Scholar
  2. 2.
    H.J. Schatzmann and F. F. Vincenzi, Calcium movements across the membrane of human red cells, J. Physiol. (London) 201, 369–395 (1969).Google Scholar
  3. 3.
    E. J. Olson and R. J. Cazort, Active calcium and strontium transport in human erythrocyte ghosts, J. Gen. Physiol. 53, 311–322 (1969).CrossRefGoogle Scholar
  4. 4.
    H. Porzig, Studies on the cation permeability of human red cell ghosts. Characterization andGoogle Scholar
  5. biological significance of two membrane sites with high affinities for Ca, J. Membrane Biol. 31, 317–349 (1977).Google Scholar
  6. 5.
    G. M. Oliveira-Castro and W. R. Loewenstein, Junctional membrane permeability. Effects of divalent cations, J. Membrane Biol 5, 51–77 (1971).CrossRefGoogle Scholar
  7. 6.
    W. C. De Mello, The healing-over process in cardiac and other muscle fibres, in: Electrical Phenomena in the Heart (W. C. De Mello, ed.), pp. 323–351, Academic Press, New York (1972).Google Scholar
  8. 7.
    R. J. P. Williams, The biochemistry of sodium, potassium, magnesium and calcium, Q. Rev. Chem. 24, 331–365 (1970).CrossRefGoogle Scholar
  9. 8.
    P. F. Baker, Transport and metabolism of calcium ions in nerve, Progr. Biophys. Mol. Biol 24, 177–223 (1972).CrossRefGoogle Scholar
  10. 9.
    T. Clausen, The role of ions in the control of intermediary metabolism, in: Ion and Enzyme Electrodes in Biology and Medicine, (M. Kessler, L. C. Clark, D. W. Lübbers, I. A. Silver, and W. Simon, eds.) Urban and Schwarzenberg, Munich (1976).Google Scholar
  11. 10.
    M. P. Blaustein, The interrelationship between sodium and calcium fluxes across cell membranes, Rev. Physiol Biochem. Pharmacol. 70, 33–82 (1974).CrossRefGoogle Scholar
  12. 11.
    H. Reuter, Calcium transport in cardiac muscle, in: Permeability and Function of BiologicalMembranes (L. Bolis, A. Katchalsky, R. D. Keynes, W. R. Loewenstein, and B. A. Pethica, eds.), pp. 342–347, North-Holland, Amsterdam (1970).Google Scholar
  13. 12.
    H. G. Glitsch, Ueber die Wirkung von Sr-Ionen auf den Ca2+-Austausch am Meerschweinchenvorhof, Experientia, 25, 612–613 (1969).CrossRefGoogle Scholar
  14. 13.
    P. F. Baker, M. P. Blaustein, A. L. Hodgkin, and R. A. Steinhardt, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200, 431–458 (1969).Google Scholar
  15. 14.
    P. F. Baker and H. G. Glitsch, Does metabolic energy participate directly in the Na+-dependent extrusion of Ca2+ ions from squid axons? J. Physiol (London) 233, 44P (1973).Google Scholar
  16. 15.
    R. Di Polo, Effect of ATP on the calcium efflux in dialyzed squid giant axons, J. Gen. Physiol. 64, 503–517 (1974).CrossRefGoogle Scholar
  17. 16.
    H. Jundt and H. Reuter, Is sodium-activated calcium efflux from mammalian cardiac muscle dependent on metabolic energy? J. Physiol (London) 266, 78–79P (1977).Google Scholar
  18. 17.
    H. Porzig, Calcium-calcium and calcium-strontium exchange across the membrane of human red cell ghosts, J. Membrane Biol. 11, 21–46 (1973).CrossRefGoogle Scholar
  19. 18.
    H. G. Ferreira and V. L. Lew, Passive Ca transport and cytoplasmic Ca buffering in intact red cells, in: Membrane Transport in Red Cells (J. C. Ellory and V. L. Lew, eds.), Academic Press, London (1977).Google Scholar
  20. 19.
    H. Bodemann and H. Passow, Factors controlling the resealing of the membrane of human erythrocyte ghosts after hypotonic hemolysis, J. Membrane Biol. 8, 1–26 (1972).CrossRefGoogle Scholar
  21. 20.
    H. Porzig, Calcium efflux from human erythrocyte ghosts, J. Membrane Biol 2, 324–340 (1970).CrossRefGoogle Scholar
  22. 21.
    W. Wilbrandt and T. Rosenberg, The concept of carrier transport and its corollaries in pharmacology, Pharmacol. Rev. 13, 109–183(1961).Google Scholar
  23. 22.
    H. Porzig, ATP-independent calcium net movements and calcium-strontium exchange in human red cell ghosts, in: Erythrocytes, Thrombocytes, Leukocytes (E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, eds.), pp. 40–43, Thieme, Stuttgart (1973).Google Scholar
  24. 23.
    I. M. Glynn and S. J. D. Karlish, The sodium pump, Annu. Rev. Physiol 37, 13–55 (1975).CrossRefGoogle Scholar
  25. 24.
    A. Weber, R. Herz, and I. Reiss, Study of the kinetics of calcium transport by isolated fragmented sarcoplasmic reticulum, Biochem. Z. 345, 329–369 (1966).Google Scholar
  26. 25.
    W. Hasselbach, W. Fiehn, M. Makinose and A. J. Migala, Calcium fluxes across isolated sarcoplasmic membranes in the presence and absence of ATP, in: The Molecular Basis of Membrane Function (D. C. Tosteson, ed.), pp. 299–316, Prentice-Hall, Englewood Cliffs, N.J. (1969).Google Scholar
  27. 26.
    H. Schatzmann, Dependence on calcium concentration and stoichiometry of the calcium pump in human red cells, J. Physiol. 235, 551–569 (1973).Google Scholar
  28. 27.
    K. S. Lee and B. C. Shin, Studies on the active transport of calcium in human red cells, J. Gen. Physiol 54, 713–729 (1969).CrossRefGoogle Scholar
  29. 28.
    H. Pfleger and H. U. Wolf, Activation of membrane-bound high-affinity calcium ion-sensitive adenosine triphosphatase of human erythrocytes by bivalent metal ions, Biochem. J. 147, 359–361 (1975).Google Scholar
  30. 29.
    H. J. Schatzmann and B. Roelofsen, Some aspects of the Ca-pump in human red blood cells, in: Biochemistry of Membrane Transport (G. Semenza and E. Carafoli, eds.), pp. 389–400, Springer-Verlag, Berlin (1977).CrossRefGoogle Scholar
  31. 30.
    E. E. Quist and B. D. Roufogalis, Determination of the stoichiometry of the calcium pump in human erythrocytes using lanthanum as a selective inhibitor, FEBS Lett. 50, 135–139 (1975).CrossRefGoogle Scholar
  32. 31.
    B. Sarkadi, I. Száz, A. Gerlóczy and G. Gardos, Transport parameters and stoichiometry of active calcium ion extrusion in intact human red cells, Biochem. Biophys. Acta 464, 93–107 (1977).CrossRefGoogle Scholar
  33. 32.
    P. Mermier and W. Hasselbach, Comparison between strontium and calcium uptake by the fragmented sarcoplasmic reticulum, Eur. J. Biochem. 69, 79–86 (1976).CrossRefGoogle Scholar
  34. 33.
    S. Lepke and H. Passow, Effects of temperature, alkaline earth metal ions, and complexing agents of the hemolyzing medium on potassium permeability of erythrocyte ghosts, Pflügers Arch. Gesamte Physiol. 289, R14 (1966).Google Scholar
  35. 34.
    J. Palek, W. A. Curby, and F. J. Lionetti, Effects of calcium and adenosine triphosphate on volume of human red cell ghosts, Am. J. Physiol. 220, 19–26 (1971).Google Scholar
  36. 35.
    B. Rose and W. R. Loewenstein, Permeability of cell junction depends on local cytoplasmic calcium activity, Nature (London), 254, 250–252 (1975).CrossRefGoogle Scholar
  37. 36.
    J. Délèze and W. R. Loewenstein, Permeability of a cell junction during intracellular injection of divalent cations, J. Membrane Biol. 28, 71–86 (1976).CrossRefGoogle Scholar
  38. 37.
    B. Rose, I. Simpson, and W. R. Loewenstein, Calcium ion produces graded changes in permeability of membrane channels in cell junction, Nature (London) 267, 625–627 (1977).CrossRefGoogle Scholar
  39. 38.
    B. Rose and W. R. Loewenstein, Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin, J. Membrane Biol. 28, 87–119 (1976).CrossRefGoogle Scholar
  40. 39.
    W. C. De Mello, Effect of intracellular injection of calcium and strontium on cell communication in heart, J. Physiol. (London) 250, 231–245 (1975).Google Scholar
  41. 40.
    J. Délèze, The recovery of resting potential and input resistance in sheep heart injured by knife or laser, J. Physiol. (London) 208, 547–562 (1970).Google Scholar
  42. 41.
    W. C. De Mello, Membrane sealing in frog skeletal muscle fibers, Proc. Natl. Acad. Sci. USA 70, 982–984 (1973).CrossRefGoogle Scholar
  43. 42.
    J. M. Diamond and E. M. Wright, Biological membranes: The physical basis of ion and nonelectrolyte selectivity, Annu. Rev. Physiol. 31, 581–646 (1969).CrossRefGoogle Scholar
  44. 43.
    H. S. Sherry, The ion exchange properties of zeolites, in: Ion Exchange (J. A. Marinsky, ed.), Vol. II, pp. 89–133, Dekker, New York (1969).Google Scholar
  45. 44.
    V. L. Lew and H. G. Ferreira, Variable Ca sensitivity of a K-selective channel in intact red cell membranes, Nature (London) 263, 336–338 (1976).CrossRefGoogle Scholar
  46. 45.
    T. J. B. Simons, Calcium-dependent potassium exchange in human red cell ghosts, J. Physiol. (London) 256, 227–244 (1976).Google Scholar
  47. 46.
    U. V. Lassen, V. L. Lew, L. Pape, and L. O. Simonsen, Transient increase in the K permeability of intact human and Amphiuma red cells induced by external Ca at alkaline pH, J. Physiol. (London) 266, 72P-73P (1977).Google Scholar
  48. 47.
    D. M. G. Jenkins and V. L. Lew, Ca uptake by ATP-depleted red cells from different species with and without associated increase in K permeability, J. Physiol. (London) 234, 41P-42P (1973).Google Scholar
  49. 48.
    U. V. Lassen, L. Pape, and B. Vestergaard-Bogind, Effect of Calcium on the membrane potential of Amphiuma red cells, J. Membrane Biol. 26, 51–70 (1976).CrossRefGoogle Scholar
  50. 49.
    M. Schneider and H. Porzig, Resealed red cell ghosts-a model system to study catecholamine effects on cation permeability, Experientia 33, 810 (1977).CrossRefGoogle Scholar
  51. 50.
    P. W. Reed, Effects of the divalent cation inophore A 23187 on potassium permeability of rat erythrocytes, J. Biol. Chem. 251, 3489–3494 (1976).Google Scholar
  52. 51.
    J. R. Riordan and H. Passow, The effects of calcium and lead on the potassium permeability of human erythrocytes and erythrocyte ghosts, in: Comparative Physiology (L. Bolis, K. Schmidt-Nielsen, and S. H. P. Maddrell, eds.), pp. 543–581, North-Holland, Amsterdam (1973).Google Scholar
  53. 52.
    F. Bezanilla and C. M. Armstrong, Negative conductance caused by entry of sodium and caesium ions into the potassium channels of squid axons, J. Gen. Physiol. 60, 588–608 (1972).CrossRefGoogle Scholar
  54. 53.
    R. M. Blum and J. F. Hoffman, The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells, J. Membrane Biol 6, 315–328 (1971).CrossRefGoogle Scholar
  55. 54.
    H. J. Schatzmann and M. Tschabold, The lanthanides Ho3+ and Pr3+ as inhibitors of calcium transport in human red cells, Experientia 27, 59–61 (1971).CrossRefGoogle Scholar
  56. 55.
    B. Sarkadi, I. Szász and G. Gárdos, The use of ionophores for rapid loading of human red cells with radioactive cations for cation-pump studies, J. Membrane Biol. 26, 357–370 (1976).CrossRefGoogle Scholar
  57. 56.
    R. W. Meech, The sensitivity of helix aspersa neurones to injected calcium ions, J. Physiol. (London) 237, 259–277 (1974).Google Scholar
  58. 57.
    K. Krnjevic and A. Lisiewicz, Injections of Ca ions into spinal motoneurones, J. Physiol. (London) 225, 363–390 (1972).Google Scholar
  59. 58.
    G. Isenberg, Is potassium conductance of cardiac Purkinje fibers controlled by [Ca2+]i? Nature, (London) 253, 273–274 (1975).Google Scholar
  60. 59.
    J. B. Bassingthwaighte, C. H. Fry, and J. A. S. McGuigan, Relationship between internal calcium and outward current in mammalian ventricular muscle, a mechanism for the control of the action potential duration? J. Physiol. (London) 262, 15–37(1976).Google Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Hartmut Porzig
    • 1
  1. 1.Pharmacological InstituteUniversity of BernBernSwitzerland

Personalised recommendations