Strontium Ions and Membranes: Screening versus Binding at Charged Surfaces

  • Joseph S. D’Arrigo


Sr2+ is one of several common alkaline earth cations that have been studied extensively over the the last decade in regard to their electrostatic effects on biological membranes. Much of this research work has centered on excitable membranes, where the presence of certain alkaline earths, particularly Ca2+, in the aqueous phase adjacent to the membrane is essential for its normal physiological behavior. However, the physicochemical mechanisms of alkaline earth action (i.e., screening and binding) that have been identified and elucidated for nerve and muscle membranes are known to also be applicable to certain artificial lipid bilayers (e.g., 1–3). Consequently, detailed consideration of the findings from past work exploring divalent cation action on excitable membranes offers appreciable insight into the types of electrostatic interaction commonly occurring between alkaline earth cations and charged membrane surfaces in general.


Divalent Cation Surface Charge Density Giant Axon Threshold Potential Alkaline Earth Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. G. A. McLaughlin, G. Szabo, and G. Eisenman, Divalent ions and the surface potential of charged phospholipid membrances, J. Gen. Physiol. 58, 667–687 (1971).CrossRefGoogle Scholar
  2. 2.
    N. Lakshminarayanaiah and C. P. Bianchi, Membranes, ions, and drugs, in: Advances in General and Cellular Pharmacology (T. Narahashi and C. P. Bianchi, eds.), Vol. II., pp. 1–70, Plenum Press, New York (1977).Google Scholar
  3. 3.
    J. S. D’Arrigo, Screening of membrane surface charges by divalent cations: An atomic representation, Am. J. Physiol. 235, C109-C117 (1978).Google Scholar
  4. 4.
    B. Frankenhaeuser and A. L. Hodgkin, The action of calcium on the electrical properties of squid axons, J. Physiol. (London) 137, 218–244 (1957).Google Scholar
  5. 5.
    B. Hille, Charges and potentials at the nerve surface: Divalent ions and pH, J. Gen. Physiol. 51, 221–236 (1968).CrossRefGoogle Scholar
  6. 6.
    D. L. Gilbert and G. Ehrenstein, Use of a fixed charge model to determine the pK of the negative sites on the external membrane surface, J. Gen. Physiol. 55, 822–825 (1970).Google Scholar
  7. 7.
    B. Frankenhaeuser, The effect of calcium on the myelinated nerve fiber, J. Physiol. (London) 137, 245–260 (1957).Google Scholar
  8. 8.
    R. Elul, Fixed charge in the cell membrane, J. Physiol. (London) 189, 351–365 (1967).Google Scholar
  9. 9.
    J. R. Segal, Surface charge of giant axons of squid and lobster, Biophys. J. 8, 470–489 (1968).CrossRefGoogle Scholar
  10. 10.
    I. Tasaki, Nerve Excitation: A Macromolecular Approach, Charles C Thomas, Springfield Ill. (1968).Google Scholar
  11. 11.
    D. L. Gilbert and G. Ehrenstein, Effect of divalent cations on potassium conductance of squid axons: Determination of surface charge, Biophys. J. 9, 447–463 (1969).CrossRefGoogle Scholar
  12. 12.
    J. S. D’Arrigo, Axonal surface charges: Binding or screening by divalent cations governed by external pH, J. Physiol. (London) 243, 757–764 (1974).Google Scholar
  13. 13.
    M. Gouy, Sur la constitution de la charge électrique à la surface d’un électrolyte, C. R. Hebd. Séanc. Acad. Sci. Paris 149, 654–657 (1909).Google Scholar
  14. 14.
    D. L. Chapman, A contribution to the theory of electrocapillarity, Philos. Mag. 25, (6) 475–481 (1913).Google Scholar
  15. 15.
    D. C. Grahame, The electrical double layer and the theory of electrocapillarity, Chem. Rev. 41, 441–501 (1947).CrossRefGoogle Scholar
  16. 16.
    D. C. Grahame, Diffuse double layer theory for electrolytes of unsymmetrical valence types, J. Chem. Phys. 21, 1054–1060 (1953).CrossRefGoogle Scholar
  17. 17.
    J. T. G. Overbeek, Electrochemistry of the double layer, in: Colloid Science (H. R. Kruyt, ed.), Vol. I, pp. 115–193, Elsevier, Amsterdam (1952).Google Scholar
  18. 18.
    W. K. Chandler, A. L. Hodgkin, and H. Meves, The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons, J. Physiol. (London) 180, 821–836 (1965).Google Scholar
  19. 19.
    F. J. Julian, J. W. Moore, and D. E. Goldman, Current-voltage relations in the lobster giant axon membrane under voltage clamp conditions, J. Gen. Physiol. 45, 1217–1238 (1962).CrossRefGoogle Scholar
  20. 20.
    M. P. Blaustein and D. E. Goldman, The action of certain polyvalent cations on the voltage-clamped lobster axon, J. Gen. Physiol. 51, 279–291 (1968).CrossRefGoogle Scholar
  21. 21.
    D. R. Hafemann, Effects of metal ions on action potentials of lobster giant axons, Comp. Biochem. Physiol 29, 1149–1161 (1969).CrossRefGoogle Scholar
  22. 22.
    S. Hagiwara and K. Takahashi, Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane, J. Gen. Physiol. 50, 583–601 (1967).CrossRefGoogle Scholar
  23. 23.
    Y. Ito, H. Kuriyama and N. Tashiro, Effects of divalent cations on spike generation in the longitudinal somatic muscle of the earthworm, J. Exp. Biol. 52, 79–94 (1970).Google Scholar
  24. 24.
    T. Narahashi, Dependence of excitability of cockroach giant axons on external divalent cations, Comp. Biochem. Physiol 19, 759–774 (1966).CrossRefGoogle Scholar
  25. 25.
    J. S. D’Arrigo, Possible screening of surface charges on crayfish axons by polyvalent metal ions, J. Physiol (London) 231, 117–128 (1973).Google Scholar
  26. 26.
    J. T. Davies and E. K. Rideal, Interfacial Phenomena, Academic Press, New York (1963).Google Scholar
  27. 27.
    J. S. D’Arrigo, Structural characteristics of the saxitoxin receptor on nerve, J. Membrane Biol. 29, 231–242 (1976).CrossRefGoogle Scholar
  28. 28.
    D. A. Haydon and S. B. Hladky, Ion transport across thin lipid membranes: A critical discussion of mechanisms in selected systems, Q. R. Biophys. 5, 187–282 (1972).CrossRefGoogle Scholar
  29. 29.
    R. U. Muller and A. Finkelstein, The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin, J. Gen. Physiol. 60, 285–306 (1972).CrossRefGoogle Scholar
  30. 30.
    S. G. A. McLaughlin, G. Szabo, G. Eisenman, et al. Surface charge and the conductance of phospholipid membranes, Proc. Natl. Acad. Sci. USA 67, 1268–1275 (1970).CrossRefGoogle Scholar
  31. 31.
    D. E. Goldman, A molecular structural basis for the excitation properties of axons, Biophys. J. 4, 167–188 (1964).CrossRefGoogle Scholar
  32. 32.
    J. S. D’Arrigo, Axonal surface charges: Evidence for phosphate structure, J. Membrane Biol. 22, 255–263 (1975).CrossRefGoogle Scholar
  33. 33.
    B. Hille, Ionic channels in nerve membranes, Prog. Biophys. Mol. Biol. 21, 1–32 (1970).CrossRefGoogle Scholar
  34. 34.
    J. S. D’Arrigo, The Initiation of Axonal Excitation: A Specific Physicochemical Model for the Sodium “Activation” Mechanism (Ph.D. thesis), University of California, Los Angeles (1972).Google Scholar
  35. 35.
    A. M. Woodhull and B. Hille, Competition between Ca and H ions at the nerve surface, Biophys. Soc. Abstr. 14, 111a (1970).Google Scholar
  36. 36.
    H. S. Sherry, The ion-exchange properties of zeolites, in: Ion Exchange (J. A. Marinsky, ed.), Vol. II, pp. 89–133, Dekker, New York (1969).Google Scholar
  37. 37.
    A. H. Truesdell, Study of natural glasses through their behavior as membrane electrodes (Ph.D. thesis), Harvard University Press, Cambridge, Mass., 1962.Google Scholar
  38. 38.
    A. H. Truesdell and C. L. Christ, Glass electrodes for calcium and other divalent cations, in: Glass Electrodes for Hydrogen and Other Cations (G. Eisenman, ed.), Chap. 11, Dekker, New York (1967).Google Scholar
  39. 39.
    G. Eisenman, Some elementary factors involved in specific ion permeation, in: Proceedings of the 23rd International Congress on Physiological Science, Tokyo, pp. 489–506, Excerpta Medica Foundation, Amsterdam (1965).Google Scholar
  40. 40.
    J. M. Diamond and E. M. Wright, Biological membranes: The physical basis of ion and nonelectrolyte selectivity, Ann. Rev. Physiol. 31, 581–646 (1969).CrossRefGoogle Scholar
  41. 41.
    G. Ehrenstein and H. M. Fishman, Evidence against hydrogen-calcium competition model for activation of electrically excitable membranes, Nature (London) New Biol. 233, 16–17 (1971).Google Scholar
  42. 42.
    M. E. Starzak, A model for conductance changes in the squid giant axon. II. Channel kinetics, J. Theoret. Biol 39, 505–522 (1973).CrossRefGoogle Scholar
  43. 43.
    W. Vogel, Calcium and lanthanum effects at the nodal membrane, Pflügers Arch. 350, 25–39 (1974).CrossRefGoogle Scholar
  44. 44.
    C. L. Schauf, The interactions of calcium with Myxicola giant axons and a description in terms of a simple surface charge model, J. Physiol (London) 248, 613–624 (1975).Google Scholar
  45. 45.
    J. S. D’Arrigo, An atomic model for ionic screening at charged membrane surfaces, in: Biomolecular Structure and Function (P. F. Agris, B. Sykes, and R. Loeppky, eds.), pp. 151–158, Academic Press, New York (1978).Google Scholar
  46. 46.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions: The Measurement and Interpretation of Conductance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes, 2nd ed., Butterworth, London (1970).Google Scholar
  47. 47.
    J. A. Schellman, Dielectric saturation of associated liquids, J. Chem. Phys. 26, 1225–1230 (1957).CrossRefGoogle Scholar
  48. 48.
    D. R. Rosseinsky, Electrode potentials and hydration energies. Theories and correlations, Chem. Rev. 65, 467–490 (1965).CrossRefGoogle Scholar
  49. 49.
    J. E. Gordon, The Organic Chemistry of Electrolyte Solutions, Wiley, New York (1975).Google Scholar
  50. 50.
    G. Eisenman, On the elementary atomic origin of equilibrium ionic specificity, in: Membrane Transport and Metabolism (A. Kleinzeller and A. Kotyk, eds.), pp. 163–179, Academic Press, New York (1961).Google Scholar
  51. 51.
    D. C. Grahame, Effects of dielectric saturation upon the diffuse double layer and the free energy of hydration of ions, J. Chem. Phys. 18, 903–909 (1950).CrossRefGoogle Scholar
  52. 52.
    R. P. Bell, Acids and Bases, Methuen, London (1952).Google Scholar
  53. 53.
    C. Hall, R. E. Richards, and R. R. Sharp, Further studies of chemical shifts in the nuclear resonances of caesium ions in solution, Proc. Roy. Soc. London A 337, 297–315 (1974).CrossRefGoogle Scholar
  54. 54.
    A. K. Covington and K. E. Newman, NMR studies of the structure of electrolyte solutions, in: Modern Aspects of Electrochemistry (J. O’M. Bockris and B. E. Conway, eds.), Vol. 12, pp. 41–129, Plenum Press, New York (1977).Google Scholar
  55. 55.
    G. Eisenman, Cation selective glass electrodes and their mode of operation, Biophys. J. 2 (P2), 259–323 (1962).CrossRefGoogle Scholar
  56. 56.
    J. T. Edsall and J. Wyman, Biophysical Chemistry, Vol. 1, Academic Press, New York (1958).Google Scholar
  57. 57.
    B. Hille, A. Woodhull and B. Shapiro, Negative surface charge near sodium channels of nerve: Divalent ions, monovalent ions, and pH, Philos. Trans. Roy. Soc. Lond. B. Biol. Sci. 270, 301–318 (1975).CrossRefGoogle Scholar
  58. 58.
    H. Ohmori and M. Yoshii, Surface potential reflected in both gating and permeation mechanisms of sodium and calcium channels of the tunicate egg cell membrane, J. Physiol. (London) 267, 429–463 (1977).CrossRefGoogle Scholar
  59. 59.
    J. S. D’Arrigo and B. Chanfour, Modulation of veratridine action on crustacean nerve by different divalent cations, Toxicon 18, 395–398 (1980).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1981

Authors and Affiliations

  • Joseph S. D’Arrigo
    • 1
  1. 1.Department of PhysiologyUniversity of Hawaii School of MedicineHonoluluUSA

Personalised recommendations