Immune Mechanisms in Infectious Diarrhea

  • Herbert L. DuPont
  • Larry K. Pickering
Part of the Current Topics in Infectious Disease book series (CTID)


The most important factors that determine the occurrence and severity of diarrheal disease include a safe environment, consisting of an efficient water source and sewage removal system; adequate personal and food hygiene; and good standards of nutrition. Despite the presence of these factors, the human body is exposed continually to pathogenic and nonpathogenic microorganisms, toxic substances, and chemicals which would be damaging or fatal if not efficiently excluded by the gastrointestinal tract. Once organisms are swallowed, the occurrence of a diarrheal syndrome will depend upon the pathogenic potential of the agent (virulence), the number of viable cells or viruses ingested, and the status of host defense factors.


Breast Milk Human Milk Intestinal Flora Enteric Infection Secretory Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartle, H. J., Harkins, M. J. The gastric secretion: Its bactericidal value to man. Am. J. Med. Sci. 169: 373 - 388, 1925CrossRefGoogle Scholar
  2. 2.
    Giannella, R. A., Broitman, S. A., Zamcheck, N. Gastric acid barrier to ingested microorganisms in man: Studies in vivo and in vitro. Gut13: 251–256, 1972PubMedCrossRefGoogle Scholar
  3. 3.
    Gitelson, S. Gastrectomy, achlorhydria and cholera. Isr. J. Med. Sci. 7: 663 - 667, 1971PubMedGoogle Scholar
  4. 4.
    Waddell, W. R., Kunz, L. J. Association of salmonella enteritis with operation on the stomach. N. Engl. J. Med. 255: 555 - 559, 1956PubMedCrossRefGoogle Scholar
  5. 5.
    Close, A. S., Smith, M. B., Koch, M. L., et al. An analysis of ten cases of salmonella infection on a general surgical service. Arch. Surg. 80: 972 - 976, 1960PubMedCrossRefGoogle Scholar
  6. 6.
    Nordbring, F. Contraction of salmonella gastroenteritis following previous operation on the stomach. Acta Med. Scand. 171: 783–790, 1962Google Scholar
  7. 7.
    Giannella, R. A., Broitman, S. A., Zamcheck, N. Salmonella enteritis: I. Role of reduced gastric secretion in pathogenesis. Am. J. Dig. Dis. 16: 1000 - 1006, 1971PubMedCrossRefGoogle Scholar
  8. 8.
    Giannella, R. A., Broitman, S. A., Zamcheck, N. Salmonella enteritis: II. Fulminant diarrhea in and effects on the small intestine. Am. J. Dig. Dis. 16: 1007 - 1013, 1971PubMedCrossRefGoogle Scholar
  9. 9.
    Hornick, R. B., Music, S. I., Wenzel, R., et al. The Broad Street pump revisited: Response of volunteers to ingested cholera vibrios. Bull. N.Y. Acad. Med. 47:1181–1191,1971.PubMedGoogle Scholar
  10. 10.
    Sack, G. H., Jr., Hennessey, K. N., Mitra, R. C., et al. Gastric acidity in cholera (abstract). Clin. Res.18: 682, 1970Google Scholar
  11. 11.
    DuPont, H. L., Hornick, R. B., Snyder, M. J., et al. Immunity in shigellosis: I. Response of man to attenuated strains of shigella. J. Infect. Dis. 125: 5 - 11, 1972PubMedCrossRefGoogle Scholar
  12. 12.
    Haas, J., Bucken, E. W. Zum Krankheitswert der Lamblien-Infektion. Dtsch. Med. Wochenschr. 92: 1869–1871, 1967PubMedCrossRefGoogle Scholar
  13. 13.
    Yardley, J. H., Takano, J., Hendrix, T. R. Epithelial and other mucosal lesions of the jejunum in giardiasis: Jejunal biopsy studies. Bull. Johns Hopkins Hosp. 115: 389–406, 1964Google Scholar
  14. 14.
    Hoskins, L. C., Winawer, S. J., Broitman, S. A., et al. Clinical giardiasis and intestinal malabsorption. Gastroenterology 53: 265 - 279, 1967Google Scholar
  15. 15.
    Levin, A. L. The problem of eradication of Strongyloides intestinalis. Am. J. Trop. Med. Hyg. 10: 353–363, 1930Google Scholar
  16. 16.
    Jones, C. A. Clinical studies in human strongyloidiasis. Gastroenterology 16: 743–756, 1950PubMedGoogle Scholar
  17. 17.
    Callender, S. T., Retief, F. P., Witts, L. J. The augmented histamine test with special reference to achiorhydria. Gut 1: 326 - 336, 1960PubMedCrossRefGoogle Scholar
  18. 18.
    Dack, G. M., Petran, E. Bacterial activity in different levels of intestine and in isolated segments of small and large bowel in monkeys and dogs. J. Infect. Dis. 54: 204 - 220, 1934CrossRefGoogle Scholar
  19. 19.
    Dixon, J. M. The fate of bacteria in the small intestine. J. Pathol. Bacteriol. 79: 131 - 140, 1960PubMedCrossRefGoogle Scholar
  20. 20.
    Sprinz, H. Pathogenesis of intestinal infections. Arch. Pathol. 87: 556 - 562, 1969PubMedGoogle Scholar
  21. 21.
    DuPont, H. L., Hornick, R. B. Adverse effect of Lomotil therapy in shigellosis. J. Am. Med. Assoc.226: 1525–1528, 1973CrossRefGoogle Scholar
  22. 22.
    Meynell, G. G. Antibacterial mechanisms of the mouse gut: II. The role of Eh and volatile fatty acids in the normal gut. Br. J. Exp. Pathol. 44: 209–219, 1963PubMedGoogle Scholar
  23. 23.
    Bohnhoff, M., Miller, C. P. Enhanced susceptibility to Salmonellainfection in streptomycin-treated mice. J. Infect. Dis. 111: 117–127, 1962PubMedCrossRefGoogle Scholar
  24. 24.
    Hornick, R. B., Griesman, S. E., Woodward, T. E., et al.Typhoid fever: Pathogenesis and immunologic control. N. Engl. J. Med. 283: 686–691, 739–746, 1970CrossRefGoogle Scholar
  25. 25.
    Aserkoff, B., Bennett, J. V. Effect of antibiotic therapy in acute salmonellosis on the fecal excretion of salmonellae. N. Engl. J. Med. 281: 636 - 640, 1969PubMedCrossRefGoogle Scholar
  26. 26.
    Macdonald, W. B., Friday, F., McEacharn, M. The effect of chloramphenicol in salmonella enteritis of infancy. Arch. Dis. Child. 29: 238 - 241, 1954PubMedCrossRefGoogle Scholar
  27. 27.
    Rosenthal, S. L. Exacerbation of salmonella enteritis due to ampicillin. N. Engl. J. Med. 280: 147 - 148, 1980CrossRefGoogle Scholar
  28. 28.
    Hentges, D. J. Inhibition of Shigella fiexneriby the normal intestinal flora: II. Mechanisms of inhibition by coliform organisms. J. Bacteriol. 97: 513 - 517, 1969PubMedGoogle Scholar
  29. 29.
    Freter, R. Interactions between mechanisms controlling the intestinal microflora. Am. J. Clin. Nutr. 27: 1409 - 1416, 1974Google Scholar
  30. 30.
    Sprunt, K., Leidy, G. A., Redman, W. Prevention of bacterial overgrowth. J. Infect. Dis. 123: 1 - 10, 1971PubMedCrossRefGoogle Scholar
  31. 31.
    Freter, R., Abrams, G. D. Function of various intestinal bacteria in converting germ-free mice to the normal state. Infect. Immun. 6: 119 - 126, 1972PubMedGoogle Scholar
  32. 32.
    Fredericq, P., Levine, M. Antibiotic interrelationships among the enteric group of bacteria. J. Bacteriol. 54: 785 - 792, 1947Google Scholar
  33. 33.
    Bergeim, O. Toxicity of intestinal volatile fatty acids for yeast and Escherichia coli. J. Infect. Dis. 66: 222–234, 1940Google Scholar
  34. 34.
    Besredka, A. On the mechanism of dysenteric infection, antidysenteric vaccine per os, and the nature of antidysenteric immunity. Ann. Inst. Pasteur Paris 33: 301, 1919Google Scholar
  35. 35.
    Besredka, A. Local Immunization: Specific Dressings, H. Plotz (trans.-ed.). Williams & Wilkins, Baltimore, 1927, 181 ppGoogle Scholar
  36. 36.
    Walsh, T. E., Cannon, P. R. Immunization of the respiratory tract: A comparative study of the antibody content of the respiratory and other tissues following active, passive and regional immunization. J. Immunol.35: 31–46, 1938Google Scholar
  37. 37.
    Hanson, L. A. Comparative immunological studies of the immune globulins of human milk and of blood serum. Int. Arch. Allergy Appl. Irnmunol. 18: 241 - 267, 1961CrossRefGoogle Scholar
  38. 38.
    Tomasi, T. B., Jr., Zigelbaum, S. The selective occurrence of gamma-1A globulins in certain body fluids. J. Clin. Invest. 42: 1552 - 1560, 1963PubMedCrossRefGoogle Scholar
  39. 39.
    Tomasi, T. B., Jr., Tan, E. M., Solomon, A., et al.Characteristics of an immune system common to certain external secretions. J. Exp. Med. 121: 101 - 124, 1965PubMedCrossRefGoogle Scholar
  40. 40.
    Deutsch, H. F. Molecular transformation of a gamma 1-globulin of human serum. J. Mol. Biol. 7: 662 - 671, 1963PubMedCrossRefGoogle Scholar
  41. 41.
    Claman, H. N., Merrill, D. A., Hartley, T. F. Salivary immunoglobulins: Normal adult values and dissociation between serum and salivary levels. J. Allergy 40: 151 - 159, 1967PubMedCrossRefGoogle Scholar
  42. 42.
    Tomasi, T. B., Jr., Bienenstock, J. Secretory immunoglobulins. Adv. Immunol. 9: 1 - 96, 1968PubMedCrossRefGoogle Scholar
  43. 43.
    Waldman, R. H., Cruz, J. M., Rowe, D. S. Immunoglobulin levels and antibody to Candida albicansin human cervicovaginal secretions. Clin. Exp. Immunol. 10: 427 - 434, 1972PubMedGoogle Scholar
  44. 44.
    Stobo, J. D., Tomasi, T. B., Jr. A low molecular weight immunoglobulin antigenically related to 19 S IgM. J. Clin. Invest. 46: 1329 - 1337, 1967PubMedCrossRefGoogle Scholar
  45. 45.
    Brandtzaeg, P., Fjellanger, I., Gjeruldsen, S. T. Localization of immunoglobulins in human nasal mucosa. Immunochemistry 4: 57 - 60, 1967PubMedCrossRefGoogle Scholar
  46. 46.
    Brandtzaeg, P., Fjellanger, I., Gjeruldsen, S. T. Human secretory immunoglobulins: I. Salivary secretions from individuals with normal or low levels of serum immunoglobulins. Scand. J. Haematol. Suppl. 12: 3 - 83, 1970PubMedGoogle Scholar
  47. 47.
    Turner, M. W., Johansson, S. G. O., Barratt, T. M., et al.Studies on the levels of immunoglobulins in normal human urine with particular reference to IgE. Int. Arch. Allergy Appl. Immunol. 37: 409 - 417, 1970PubMedCrossRefGoogle Scholar
  48. 48.
    Cederblad, G., Johansson, B. G., Rymo, L. Reduction and proteolytic degradation of immunoglobulin A from human colostrum. Acta Chem. Scand. 20: 2349 - 2357, 1966PubMedCrossRefGoogle Scholar
  49. 49.
    Shim, B. S., Kang, Y. S., Kim, W. J., et al. Self-protective activity of colostral IgA against tryptic digestion. Nature 222: 787–788, 1969PubMedCrossRefGoogle Scholar
  50. 50.
    Brown, W. R., Newcomb, R. W., Ishizaka, K. Proteolytic degradation of exocrine and serum immunoglobulins. J. Clin. Invest. 49: 1374 - 1380, 1970PubMedCrossRefGoogle Scholar
  51. 51.
    Craig, S. W., Cebra, J. J. Peyer’s patches: An enriched source of precursors for IgAproducing immunocytes in the rabbit. J. Exp. Med. 134: 188–200, 1971PubMedCrossRefGoogle Scholar
  52. 52.
    Davies, A. An investigation into the serological properties of dysentery stools. Lancet 2: 1009 - 1012, 1922CrossRefGoogle Scholar
  53. 53.
    Burrows, W., Elliott, M. E., Havens, I. Studies on immunity to Asiatic cholera: IV. The excretion of coproantibody in experimental enteric cholera in the guinea pig. J. Infect. Dis.81: 261–281, 1947PubMedCrossRefGoogle Scholar
  54. 54.
    Chaicumpa, W., Rowley, D. Experimental cholera in infant mice: Protective effects of antibody. J. Infect. Dis. 125: 480 - 485, 1972PubMedCrossRefGoogle Scholar
  55. 55.
    Fubara, E. S., Freter, R. Protection against enteric bacterial infection by secretory IgA antibodies. J. Immunol. 111: 395 - 403, 1973PubMedGoogle Scholar
  56. 56.
    Dowdle, W. R., Coleman, M. T., Schoenbaum, S. C., et al.Studies on inactivated influenza vaccines: III. Effect of subcutaneous dosage on antibody levels in nasal secretions and protection against natural challenge. In D. H. Dayton (ed.), Conference on Secretory Immunologic System. National Institutes of Health, Bethesda, Md., 1971, pp. 113–127Google Scholar
  57. 57.
    Adinolfi, M., Glynn, A. A., Lindsay, M., et al.Serological properties of gamma-A antibodies to Escherichia colipresent in human colostrum. Immunology 10: 517 - 526, 1966PubMedGoogle Scholar
  58. 58.
    Ellman, L., Green, I., Frank, M. M. Immune function in C4 deficient guinea pigs. Demonstration of an alternate pathway for activation of the complement sequence (abstract). Clin. Res. 19: 440, 1971Google Scholar
  59. 59.
    Wernet, P., Breu, H., Knop, J., et al. Antibacterial action of specific IgA and transport IgM, IgA, and IgG from serum into the small intestine. J. Infect. Dis. 124: 223 - 226, 1971PubMedCrossRefGoogle Scholar
  60. 60.
    Freter, R., De, S. P., Mondai, A., et al.Coproantibody and serum antibody in cholera patients. J. Infect. Dis.115: 83–87, 1965PubMedCrossRefGoogle Scholar
  61. 61.
    Ganguly, R., Ogra, P. L., Regas, S., et al.Rubella immunization of volunteers via the respiratory tract. Infect. Immun. 8: 497 - 502, 1973PubMedGoogle Scholar
  62. 62.
    Freter, R. Intestinal immunity: Studies of the mechanism of action of intestinal antibody in experimental cholera. Tex. Rep. Biol. Med. Suppl. 27: 299 - 316, 1969Google Scholar
  63. 63.
    Williams, R. C., Gibbons, R. J. Inhibition of bacterial adherence by secretory immunoglobulin A: A mechanism of antigen disposal. Science 177: 697 - 699, 1972PubMedCrossRefGoogle Scholar
  64. 64.
    Carter, P. B., Pollard, M. Host responses to “normal” microbial flora in germ-free mice. J. Reticuloendothel. Soc. 9: 580–587, 1971Google Scholar
  65. 65.
    Berg, R. D., Savage, D. C. Immunological responses and microorganisms indigenous to the gastrointestinal tract. Am. J. Clin. Nutr. 25: 1364 - 1371, 1972Google Scholar
  66. 66.
    Foo, M. C., Lee, A Immunological response of mice to members of the autochthonous intestinal microflora. Infect. Immun. 6: 525 - 532, 1972PubMedGoogle Scholar
  67. 67.
    Shedlofsky, S., Freter, R. Synergism between ecologic and immunologic control mechanisms of intestinal flora. J. Infect. Dis. 129: 296–303, 1974PubMedCrossRefGoogle Scholar
  68. 68.
    Sirisinha, S., Suskind, R., Edelman, R., et al.Secretory and serum IgA in children with protein-calorie malnutrition. Pediatrics 55:166–170, 1975PubMedGoogle Scholar
  69. 69.
    Henney, C. S., Waldman, R. H. Cell-mediated immunity shown by lymphocytes from the respiratory tract. Science 169: 696–697, 1970PubMedCrossRefGoogle Scholar
  70. 70.
    Galindo, B., Myrvik, Q. N. Migratory response of granulomatous alveolar cells from BCG-sensitized rabbits. J. Immunol. 105: 227 - 237, 1970PubMedGoogle Scholar
  71. 71.
    Waldman, R. H., Spencer, C. S., Johnson, J. E., III. Respiratory and systemic cellular and humoral immune responses to influenza virus vaccine administered parenterally or by nose drops. Cell. Immunol. 3: 294–300, 1972PubMedCrossRefGoogle Scholar
  72. 72.
    Roux, M. E., McWilliams, M., Phillips-Quagliata, J. M., et al. Origin of IgA-secreting plasma cells in the mammary gland. J. Exp. Med. 146: 1311 - 1322, 1977PubMedCrossRefGoogle Scholar
  73. 73.
    Diaz-Jouanen, E., Williams, R. C., Jr. T and B lymphocytes in human colostrum. Clin. Immunol. Immunopathol. 3: 248 - 255, 1974PubMedCrossRefGoogle Scholar
  74. 74.
    Parmely, M. J., Reath, D. B., Beer, A. E., et al. Cellular immune responses of human milk T lymphocytes to certain environmental antigens. Transplant. Proc. 9: 1477 - 1483, 1977PubMedGoogle Scholar
  75. 75.
    Parmely, M. J., Beer, A. E., Billingham, R. E. In vitrostudies on the T lymphocyte population of human milk. J. Exp. Med.144: 358–370, 1976PubMedCrossRefGoogle Scholar
  76. 76.
    Barclay, W. R., Busey, W. M., Dalgard, D. W., et al.Protection of monkeys against airborne tuberculosis by aerosol vaccination with Bacillus Calmette-Guérin. Am. Rev. Respir. Dis. 107: 351 - 358, 1973PubMedGoogle Scholar
  77. 77.
    Müller-Schoop, J. W., Good, R. A. Functional studies of Peyer’s patches: Evidence for their participation in intestinal immune response. J. Immunol. 114: 1757 - 1760, 1975PubMedGoogle Scholar
  78. 78.
    Gowans, J. L., Knight, E. J. The route of re-circulation of lymphocytes in the rat. Proc. R. Soc. London Ser. B 159: 257 - 282, 1964CrossRefGoogle Scholar
  79. 79.
    Griscelli, C., Vassalli, P., McCluskey, R. T. The distribution of large dividing lymph node cells in syngeneic recipient rats after intravenous injection. J. Exp. Med. 130: 1427 - 1451, 1969PubMedCrossRefGoogle Scholar
  80. 80.
    Hall, J. G., Parry, D. M., Smith, M. E. The distribution and differentiation of lymph-borne immunoblasts after intravenous injection into syngeneic recipients. Cell Tissue Kinet. 5: 269–281, 1972PubMedGoogle Scholar
  81. 81.
    Pierce, N. F., Gowans, J. L. Cellular kinetics of the intestinal immune response to cholera toxoid in rats. J. Exp. Med. 142: 1550 - 1563, 1975PubMedCrossRefGoogle Scholar
  82. 82.
    Guy-Grand, D., Griscelli, C., Vassalli, P. The gut associated lymphoid system: Nature and properties of the large dividing cells. Eur. J. Immunol. 4: 435 - 443, 1974PubMedCrossRefGoogle Scholar
  83. 83.
    Lamm, M. E. Cellular aspects of immunoglobulin A. Adv. Immunol. 22: 223 - 290, 1976PubMedCrossRefGoogle Scholar
  84. 84.
    Raff, M. C., Owen, J. -J. T. Thymus-derived lymphocytes: Their distribution and role in the development of peripheral lymphoid tissues of the mouse. Eur. J. Immunol. 1: 27 - 30, 1971PubMedCrossRefGoogle Scholar
  85. 85.
    McWilliams, M., Phillips-Quagliata, J. M., Lamm, M. E. Characteristics of mesenteric lymph node cells homing to gut-associated lymphoid tissue in syngeneic mice. J. Immunol. 115: 54 - 58, 1975PubMedGoogle Scholar
  86. 86.
    Rudzik, O., Clancy, R. L., Perey, D. Y. E., et al.The distribution of a rabbit thymic antigen and membrane immunoglobulins in lymphoid tissue, with special reference to mucosal lymphocytes. J. Immunol. 114: 1 - 4, 1975PubMedGoogle Scholar
  87. 87.
    Wilson, B. S., Teodorescu, M., Dray, S. Enumeration and isolation of rabbit T and B lymphocytes by using antibody-coated erythrocytes. J. Immunol. 116: 1306 - 1312, 1976PubMedGoogle Scholar
  88. 88.
    Mata, L. J., Urrutia, J. J., Fernandez, R., et al., Shigellainfection in breast-fed Guatemalan Indian neonates. Am. J. Dis. Child. 117: 142–146, 1969PubMedGoogle Scholar
  89. 89.
    Jelliffe, D. B., Jelliffe, E. F. Current concepts in nutrition: “Breast is best”: Modern meaning. N. Engl. J. Med. 297: 912 - 915, 1977PubMedCrossRefGoogle Scholar
  90. 90.
    Bullen, C. L. Willis, A. T. Resistance of the breast-fed infant to gastroenteritis. Br. Med. J. 3: 338 - 343, 1971PubMedCrossRefGoogle Scholar
  91. 91.
    Mata, L. J., Urrutia, J. J., Gordon, J. E. Diarrhoea(disease in a cohort of Guatemalan village children observed from birth to age two years. Trop. Geogr. Med. 19: 247 - 257, 1967PubMedGoogle Scholar
  92. 92.
    Alexander, M. B. Infantile diarrhoea and vomiting. A review of 456 infants treated in a hospital unit for enteritis. Br. Med. J. 2: 973–978, 1948PubMedCrossRefGoogle Scholar
  93. 93.
    Ross, C. A. C., Dawes, E. A. Resistance of the breast-fed infant to gastroenteritis. Lancet 1: 994 - 998, 1954CrossRefGoogle Scholar
  94. 94.
    Hinton, N. A., MacGregor, R. R. A study of infections due to pathogenic serogroups of Escherichia coli. Can. Med. Assoc. J. 79: 359–364, 1958Google Scholar
  95. 95.
    Gordon, J. E., Chitkara, I. D., Wyon, J. B. Weanling diarrhea. Am. J. Med. Sci. 245:345–377, 1963.Google Scholar
  96. 96.
    Bullen, C. L., Tearle, P. V., Stewart, M. G. The effect of “humanised” milks and supplemented breast feeding on the faecal flora of infants. J. Med. Microbiol. 10:403413, 1977Google Scholar
  97. 97.
    Jelliffe, D. B., Jelliffe, E. F. P. Symposium: The uniqueness of human milk: Introduction. Am. J. Clin. Nutr. 24: 968 - 969, 1971PubMedGoogle Scholar
  98. 98.
    Bullen, C. L., Tearle, P. V., Willis, A. T. Bifidobacteria in the intestinal tract of infants: An in vivostudy. J. Med. Microbiol. 9: 325 - 333, 1976PubMedCrossRefGoogle Scholar
  99. 99.
    Hentges, D. J. Influence of pH on the inhibitory activity of formic and acetic acids for Shigella. J. Bacteriol. 93: 2029 - 2030, 1967PubMedGoogle Scholar
  100. 100.
    Haenel, H. Some rules in the ecology of the intestinal microflora of man. J. Appl. Bacteriol. 24:242, 1%1.Google Scholar
  101. 101.
    Smith, H. W., Crabb, W. E. The faecal bacterial flora of animals and man: Its development in the young. J. Pathol. Bacteriol.82: 53–66, 1961Google Scholar
  102. 102.
    Vahlquist, B. The transfer of antibodies from mother to offspring. Adv. Pediatr. 10: 305 - 338, 1958Google Scholar
  103. 103.
    Goldman, A. S., Smith, C. W. Host resistance factors in human milk. J. Pediatr. 82: 1082 - 1090, 1973PubMedCrossRefGoogle Scholar
  104. 104.
    Yolken, R. H., Wyatt, R. G., Zissis, G., et al.Epidemiology of human rotavirus types 1 and 2 as studied by enzyme-linked immunosorbent assay. N. Engl. J. Med. 299: 1156 - 1161, 1978PubMedCrossRefGoogle Scholar
  105. 105.
    Ammann, A. J., Stiehm, E. R. Immune globulin levels in colostrum and breast milk, and serum from formula-and breast-fed newborns. Proc. Soc. Exp. Biol. Med. 122: 1098 - 1100, 1966PubMedGoogle Scholar
  106. 106.
    Nordbring, F. The failure of newborn premature infants to absorb antibodies from heterologous colostrum. Acta Paediatr. Scand.46: 569–578, 1957CrossRefGoogle Scholar
  107. 107.
    Hodes, H. L., Berger, R., Ainbender, E., et al.Proof that colostrum polio antibody is different from serum antibody (abstract). J. Pediatr. 65: 1017 - 1018, 1964CrossRefGoogle Scholar
  108. 108.
    Kenny, J. F., Boesman, M. I., Michaels, R. H. Bacterial and viral coproantibodies in breast-fed infants. Pediatrics 39: 202 - 213, 1967PubMedGoogle Scholar
  109. 109.
    Hess, A. F. The gastric secretion of infants at birth. Am. J. Dis. Child. 6: 264 - 276, 1913Google Scholar
  110. 110.
    Avery, G. B., Randolph, J. G., Weaver, T. Gastric acidity in the first day of life. Pediatrics 37: 1005 - 1007, 1966PubMedGoogle Scholar
  111. 111.
    Kopel, F. B., Barbero, G. J. Gastric acid secretion in infancy and childhood (abstract). Gastroenterology 52: 1101, 1967Google Scholar
  112. 112.
    Barbero, G. J., Runge, G., Fischer, D., et al.Investigations on the bacterial flora, pH, and sugar content in the intestinal tract of infants. J. Pediatr. 40: 152 - 163, 1952PubMedCrossRefGoogle Scholar
  113. 113.
    Euler, A. R., Byrne, W. J., Cousins, L. M., et al.Increased serum gastrin concentration and gastric acid hyposecretion in the immediate newborn period. Gastroenterology 72: 1271 - 1273, 1977PubMedGoogle Scholar
  114. 114.
    Euler, A. R., Byrne, W. J., Meis, P. J., et al. Basal and pentagastrin-stimulated acid secretion in newborn human infants. Pediatr. Res.13: 36–37, 1979PubMedCrossRefGoogle Scholar
  115. 115.
    Schubert, J., Griinberg, A. Zur Frage der Übertragung von Immun-Antikörpern von der Mutter auf das Kind. Schweiz. Med. Wochenschr. 79: 1007 - 1010, 1949PubMedGoogle Scholar
  116. 116.
    Michael, J. G., Ringenback, R., Hottenstein, S. The antimicrobial activity of human colostral antibody in the newborn. J. Infect. Dis. 124: 445–448, 1971PubMedCrossRefGoogle Scholar
  117. 117.
    Gindrat, J. J. Gothefors, L., Hanson, L. A., et al.Antibodies in human milk against E. coliof the serogroups most commonly found in neonatal infections. Acta Paediatr. Scand. 61: 587 - 590, 1972PubMedCrossRefGoogle Scholar
  118. 118.
    Hanson, L. A., Carlsson, B., Ahlstedt, S., et al.Immune defense factors in human milk. Mod. Probl. Paediatr. 15: 63, 1975Google Scholar
  119. 119.
    Burdon, D. W. The bactericidal action of immunoglobulin A. J. Med. Microbiol. 6: 131 - 139, 1973PubMedCrossRefGoogle Scholar
  120. 120.
    Walker, W. A., Isselbacher, K. J., Bloch, K. J. Intestinal uptake of macromolecules: Effect of oral immunization. Science 177: 608 - 610, 1972PubMedCrossRefGoogle Scholar
  121. 121.
    Walker, W. A., Wu, M., Isselbacher, K. J., et al.Intestinal uptake of macromolecules: III. Studies on the mechanism by which immunization interferes with antigen uptake. J. Immunol. 115: 854 - 861, 1975PubMedGoogle Scholar
  122. 122.
    McClelland, D. B., Samson, R. R., Parkin, D. M., et al.Bacterial agglutination studies with secretory IgA prepared from human gastrointestinal secretions and colostrum. Gut 13: 450 - 458, 1972PubMedCrossRefGoogle Scholar
  123. 123.
    Rutter, J. M., Jones, G. W., Brown, G. T. H., et al.Antibacterial activity in colostrum and milk associated with protection of piglets against enteric disease caused by K88-positive Escherichia coli. Infect. Immun. 13: 667–676, 1976Google Scholar
  124. 124.
    Warren, R. J., Lepow, M. L., Bartsch, G. E., et al.The relationship of maternal antibody, breast feeding, and age to the susceptibility of newborn infants to infection with attenuated polioviruses. Pediatrics 34: 4 - 13, 1964PubMedGoogle Scholar
  125. 125.
    Gonzaga, A. J., Warren, R. J., Robbins, F. C. Attenuated poliovirus infection in infants fed colostrum from poliomyelitis immune cows. Pediatrics 32: 1039 - 1043, 1963PubMedGoogle Scholar
  126. 126.
    Downham, M. A., Scott, R., Sims, D. G., et al.Breast-feeding protects against respiratory syncytial virus infections. Br. Med. J. 2: 274 - 276, 1976PubMedCrossRefGoogle Scholar
  127. 127.
    Falkler, W. A., Jr., Diwan, A. R., Halstead, S. B. A lipid inhibitor of dengue virus in human colostrum and milk; with a note on the absence of antidengue secretory antibody. Arch. Virol. 47: 3 - 10, 1975PubMedCrossRefGoogle Scholar
  128. 128.
    Matthews, T. H., Nair, C. D., Lawrence, M. K., et al.Antiviral activity in milk of possible clinical importance. Lancet 2: 1387–1389, 1976PubMedCrossRefGoogle Scholar
  129. 129.
    Woode, G. N., Jones, J., Bridger, J. L. Levels of colostral antibodies against neonatal calf diarrhoea virus. Vet. Rec. 97: 148 - 149, 1975PubMedCrossRefGoogle Scholar
  130. 130.
    Snodgrass, D. R., Wells, P. W. Rotavirus infection in lambs: Studies on passive protection. Arch. Virol. 52: 201 - 205, 1976PubMedCrossRefGoogle Scholar
  131. 131.
    Abou-Youssef, M. H., Ristic, M. Protective effect of immunoglobulins in serum and milk of sows exposed to transmissible gastroenteritis virus. Can. J. Comp. Med. 39: 4145, 1975Google Scholar
  132. 132.
    Bohl, E. H., Saif, L. J. Passive immunity in transmissible gastroenteritis of swine: Immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes. Infect. Immun. 11: 23 - 32, 1975PubMedGoogle Scholar
  133. 133.
    Totterdell, B. M., Chrystie, I. L., Banatvala, J. E. Rotavirus infections in a maternity unit. Arch. Dis. Child.51: 924–928, 1976PubMedCrossRefGoogle Scholar
  134. 134.
    Schoub, B. D., Prozesky, O. W., Lecatsas, G., et al.The role of breast-feeding in the prevention of rotavirus infection. J. Med. Microbiol.11: 25–31, 1978PubMedCrossRefGoogle Scholar
  135. 135.
    Yolken, R. H., Wyatt, R. G., Mata, L., et al.Secretory antibody directed against rotavirus in human milk: Measurement by means of enzyme linked immunosorbent assay. J. Pediatr. 93: 916 - 921, 1978PubMedCrossRefGoogle Scholar
  136. 136.
    Gothefors, L., Winberg, J. Symposium on breast-feeding: Host resistance factors. J. Trop. Pediatr. 21: 260 - 263, 1975Google Scholar
  137. 137.
    Ho, P. C., Lawton, J. W. Human colostral cells: Phagocytosis and killing of E. coliand C. albicans. J. Pediatr. 93: 910–915, 1978Google Scholar
  138. 138.
    Ahlstedt, S., Carlsson, B., Hanson, L. A., et al. Antibody production by human colostral cells: I. Immunoglobulin class, specificity and quantity. Scand. J. Immunol. 4: 535 - 539, 1975PubMedCrossRefGoogle Scholar
  139. 139.
    Smith, J. W., Schultz, R. D. Mitogen-and antigen-responsive milk lymphocytes. Cell. Immunol. 29:165–173, 1977Google Scholar
  140. 140.
    Ogra, S. S., Ogra, P. L. Immunologic aspects of human colostrum and milk: II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation. J. Pediatr.92: 550–555, 1978PubMedCrossRefGoogle Scholar
  141. 140.
    Ogra, S. S., Ogra, P. L. Immunologic aspects of human colostrum and milk: II. Characteristics of lymphocyte reactivity and distribution of E-rosette forming cells at different times after the onset of lactation. J. Pediatr.92: 550–555, 1978PubMedCrossRefGoogle Scholar
  142. 142.
    Kohl, S., Malloy, M. M., Pickering, L. K., et al.Human colostral cytotoxicity: I. Antibody-dependent cellular cytotoxicity against Herpes simplexviral infected cells mediated by colostral cells. J. Clin. Lab. Immunol. 1: 221 - 224, 1978PubMedGoogle Scholar
  143. 143.
    Ogra, P. L., Karzon, D. T., Righthand, F., et al. Immunoglobulin response in serum and secretions after immunization with live and inactivated poliovaccine and natural infection. N. Engl. J. Med. 279:893–900, 1%8.Google Scholar
  144. 144.
    Ogra, P. L., Karzon, D. T. The role of immunoglobulins in the mechanism of mucosal immunity to viral infection. Pediatr. Clin. NorthAm. 17: 385–400, 1970Google Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Herbert L. DuPont
    • 1
  • Larry K. Pickering
    • 2
  1. 1.Program in Infectious Diseases and Clinical MicrobiologyThe University of Texas Health Science Center Medical SchoolHoustonUSA
  2. 2.Pediatric Infectious Diseases Program in Infectious Diseases and Clinical MicrobiologyThe University of Texas Health Science Center Medical SchoolHoustonUSA

Personalised recommendations