Advertisement

Immunologic Reactivity of Lymphoid Cells in Tumors

  • Ronald B. Herberman
  • Howard T. Holden
  • Luigi Varesio
  • Tadayoshi Taniyama
  • Paolo Puccetti
  • Holger Kirchner
  • James Gerson
  • Sandra White
  • Yona Keisari
  • J. Stephen Haskill
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 10)

Abstract

There have been many studies of immune responses against tumors and almost all of these have focused on the reactivity in the blood or spleen. From such studies, it has become clear that a wide variety of effector cells and types of immune functions may be involved in antitumor responses. Particular attention has been directed toward T cells that may be directly cytotoxic against tumor cells or may proliferate or produce lymphokines upon stimulation with tumor antigens. However, other effector mechanisms may be involved and need to be considered. These include B cells, which can produce antibodies that affect tumor cells directly or that interact with K cells or macrophages and thereby mediate antibody-dependent cell-mediated cytotoxicity; macrophages and monocytes, which are spontaneously cytotoxic or can be activated to become cytotoxic against tumor cells; and natural killer (NK) cells, a subpopulation of lymphocytes with spontaneous cytotoxic reactivity against tumor cells.

Keywords

Natural Killer Migration Inhibition Factor Velocity Sedimentation Suppressor Cell Cytolytic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, S., and Klein, E., 1977, Decreased “natural killer”-NK-effect in tumor bearing mice and its relation to the immunity against oncorna virus determined cell surface antigens, Eur. J. Immunol. 6: 892–898.CrossRefGoogle Scholar
  2. Berlinger, N. T., Lopez, C., and Good, R. A, 1976, Facilitation or attenuation of mixed leukocyte culture responsiveness by adherent cells, Nature (London) 260: 145–146.CrossRefGoogle Scholar
  3. Broder, S., Humphrey, R., Durm, M., Blackman, M., Meade, B., Goldman, C., Strober, W., and Waldmann, T., 1975, Impaired synthesis of polyclonal (non-paraprotein) immunoglobulins by circulating lymphocytes from patients with multiple myeloma, N. Engl. J. Med. 293: 887–892.PubMedCrossRefGoogle Scholar
  4. Dean, J. H., McCoy, J. L., Cannon, G. B., Leonard, C. M., Perlin, E., Kreutner, A., Oldham, R. K., and Herberman, R. B., 1977, Cell-mediated immune responses of breast cancer patients to autologous tumor-associated antigens, J. Natl. Cancer Inst. 58: 549–555.PubMedGoogle Scholar
  5. Dean, J. H., Jerrells, T. R., Cannon, G. B., Kibrite, A., Baumgardner, B., Weese, J. L., Silva, J., and Herberman, R. B., 1978, Demonstration of specific cell-mediated antitumor immunity in lung cancer to autologous tissue extracts, Int. J. Cancer 22: 367–377.PubMedCrossRefGoogle Scholar
  6. Djeu, J. Y., Heinbaugh, J. A., Holden, H. T., and Herberman, R. B., 1979, Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J. Immunol. 122: 175–181.PubMedGoogle Scholar
  7. Fernbach, B. R., Kirchner, H., Bonnard, G. D., and Herberman, R. B., 1976, Suppression of mixed lymphocyte responses in mice bearing primary tumors induced by murine sarcoma virus, Transplantation 21: 381–386.PubMedCrossRefGoogle Scholar
  8. Fossati, G., Holden, H., and Herberman, R. B., 1975, Evaluation of the cell-mediated immune response to murine sarcoma virus by 125iododeoxyuridine assay and comparison with 51 chromium and microcytotoxicity assays, Cancer Res. 35: 2600–2608.PubMedGoogle Scholar
  9. Gerson, J. M., Holden, H. T., Bonnard, G. D., and Herberman, R. B., 1979, Natural killer cell (NK) activity in murine and human tumors. Proc. Am. Assoc. Cancer Res. 20: 238 (abstract).Google Scholar
  10. Glaser, M., Kirchner, H., Holden, H. T., and Herberman, R. B., 1976, Inhibition of cell-mediated cytotoxicity against tumor-associated antigens by suppressor cells from tumor-bearing mice, J. Natl. Cancer Inst. 56: 865–867.PubMedGoogle Scholar
  11. Goodwin, J. S., Messner, R. P., Bankhurst, A. D., Peake, G. T., Saiki, J. H., and Williams, R. C., Jr., 1977, Prostaglandin-producing suppressor cells in Hodgkin’s disease, N. Engl. J. Med. 297: 963–968.PubMedCrossRefGoogle Scholar
  12. Grant, C. K., Evans, R., and Alexander, P., 1973, Multiple effector roles of lymphocytes in allograft immunity, Cell. Immunol. 8: 136–146.PubMedCrossRefGoogle Scholar
  13. Herberman, R. B., and Holden, H. T., 1978, Natural cell-mediated immunity, in: Advances in Cancer Research, Vol. 27 ( G. Klein and S. Weinhouse, eds.), pp. 305–377, Academic Press, New York.Google Scholar
  14. Herberman, R. B., Nunn, M. E., and Lavrin, D. H., 1975, Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. I. Distribution of reactivity and specificity, Int. J. Cancer 16: 216–229.PubMedCrossRefGoogle Scholar
  15. Herberman, R. B., Kirchner, H., Holden, H. T., Glaser, M., Haskill, S., and Bonnard, G. D., 1976, Cell-mediated immunity in murine virus tumor systems, in: Tumor Virus Infections and Immunity ( R. L. Crowell, H. Friedman, and J. E. Prier, eds.), pp. 147–164, University Park Press, Baltimore.Google Scholar
  16. Herberman, R. B., Ortaldo, J. R., and Bonnard, G. D., 1979, Augmentation by interferon of human natural and antibody-dependent cell-mediated cytoxicity, Nature (London) 277: 221–223.CrossRefGoogle Scholar
  17. Herberman, R. B., Holden, H. T., Djeu, J. Y., Jerrells, T. R., Varesio, L., Tagliabue, A., White, S. L., Oehler, J. R., and Dean, J. H., 1980, Macrophages as regulators of immune responses against tumors, in: Macrophages and Lymphocytes: Nature, Functions, and Interaction (M. R. Escobar and H. Friedman, eds.), Part B, pp. 361–379, Plenum Press, New York.Google Scholar
  18. Holden, H. T., Haskill, J. S., Kirchner, H., and Herberman, R. B., 1976, Two functionally distinct anti-tumor effector cells isolated from primary murine sarcoma virus-induced tumors, J. Immunol. 117: 440–446.PubMedGoogle Scholar
  19. Holden, H. T., Varesio, L., Taniyama, T., and Puccetti, P., 1980, Functional heterogeneity and T cell-dependent activation of macrophages from murine sarcoma virus (MSV)induced tumors, in: Macrophages and Lymphocytes: Nature, Functions, and Interactions (M. R. Escobar and H. Friedman, eds.), Part B, pp. 509–520, Plenum Press, New York.Google Scholar
  20. Jerrells, T. R., Dean, J. H., Richardson, G. L., McCoy, J. L., and Herberman, R. B., 1978, Role of suppressor cells in depression of in vitro lymphoproliferative responses of lung and breast cancer patients, J. Natl. Cancer Inst. 61: 1001–1009.PubMedGoogle Scholar
  21. Keisari, Y., and Witz, I. P., 1975, The specific blocking of humoral immune cytolysis by anti-tumor antibodies degraded by lysosomal enzymes of tumor origin, Eur. J. Immunol. 5: 790–795.PubMedCrossRefGoogle Scholar
  22. Kirchner, H., Chused, T. M., Herberman, R. B., Holden, H. T., and Lavrin, D. H., 1974a, Evidence of suppressor cell activity in spleens of mice bearing primary tumors induced by Moloney sarcoma virus, J. Exp. Med. 139: 1473–1487.PubMedCrossRefGoogle Scholar
  23. Kirchner, H., Herberman, R. B., Glaser, M., and Lavrin, D. H., 1974b, Suppression of in vitro lymphocyte stimulation in mice bearing primary Moloney sarcoma virus-induced tumors, Cell. Immunol. 13: 32–40.PubMedCrossRefGoogle Scholar
  24. Kirchner, H., Holden, H. T., and Herberman, R. B., 1975a, Inhibition of in vitro growth of lymphoma cells by macrophages from tumor-bearing mice, J. Natl. Cancer Inst. 55: 971–975.PubMedGoogle Scholar
  25. Kirchner, H., Muchmore, A. V., Chused, T. M., Holden, H. T., and Herberman, R. B., 1975a, Inhibition of proliferation of lymphoma cells and T lymphocytes by suppressor cell from spleens of tumor-bearing mice, J. Immunol. 114: 206–210.PubMedGoogle Scholar
  26. Landolfo, S., Herberman, R. B., and Holden, H. T., 1977a, Cellular immunity to murine sarcoma virus-induced tumors as measured by macrophage migration inhibition assays, J. Natl. Cancer Inst. 59: 1675–1683.PubMedGoogle Scholar
  27. Landolfo, S., Herberman, R. B., and Holden, H. T., 1977b, Two different mechanisms of stimulating migration inhibition factor (MIF) production in response to soluble tumor-associated antigens or intact tumor cells. Nature (London) 270: 62–64.CrossRefGoogle Scholar
  28. Landolfo, S., Herberman, R. B., and Holden, H. T., 1978, Macrophage-lymphocyte interaction in migration inhibition factor (MIF) production against soluble or cellular tumor-associated antigens. I. Characteristics and genetic control of different mechanisms of stimulating MIF production, J. Immunol. 121: 695–701.PubMedGoogle Scholar
  29. Landolfo, S., Herberman, R. B., and Holden, H. T., 1980, Macrophage-lymphocyte interaction in migration inhibition factor (MIF) production. II. Identification of two subclasses of T lymphocytes producing MIF against soluble tumor-associated antigens, J. Immunol., submitted.Google Scholar
  30. Lavrin, D. H., Herberman, R. B., Nunn, M., and Soares, N., 1973, In vitro cytotoxicity studies of immune sarcoma virus (MSV)-induced immunity in mice, J. Natl. Cancer Inst. 51: 1497–1508.Google Scholar
  31. McCoy, J., Herberman, R., Perlin, E., Levine, P., and Alford, C., 1973, 51Cr release cellular lymphocyte cytotoxicity as a possible measure of immunological competence of cancer patients, Proc. Am. Assoc. Cancer Res. 14: 107.Google Scholar
  32. Pross, H. F., and Baines, M. G., 1976, Spontaneous human lymphocyte-mediated cytotoxic-ity against tumour target cells. I. The effect of malignant disease, Int. J. Cancer 18: 593–604.PubMedCrossRefGoogle Scholar
  33. Puccetti, P., and Holden, H. T., 1979 Cytolytic and cytostatic anti-tumor activities of macrophages from mice injected with murine sarcoma virus, Int. J. Cancer 23: 123–133.PubMedCrossRefGoogle Scholar
  34. Russell, S. W., Doe, W. F., and McIntosh, A. T., 1977, Functional characterization of a stable, noncytolytic stage of macrophage activation in tumors, J. Exp. Med. 146: 1511–1520.PubMedCrossRefGoogle Scholar
  35. Takasugi, M., Ramseyer, A., and Takasugi, J., 1977, Decline of natural non-selective cell- mediated cytotoxicity in patients with tumor progression. Cancer Res. 37: 413–418.PubMedGoogle Scholar
  36. Takeichi, N., Boone, C. W., Holden, H. T., and Herberman, R. B., 1978, Immunological study of two stocks of Moloney sarcoma virus producing regressor and progressor tumors in C57BL/6 mice, Int. J. Cancer 21: 78–84.PubMedCrossRefGoogle Scholar
  37. Taniyama, T., and Holden, H. T., 1979, Cytolytic activity of macrophages isolated from primary murine sarcoma virus (MSV)-induced tumors, Int. J. Cancer 24: 151–160.PubMedCrossRefGoogle Scholar
  38. Varesio, L., Herberman, R. B., Gerson, J. M., and Holden, H. T., 1979, Suppression of lymphokine production by macrophages infiltrating murine virus-induced tumors, Int. J. Cancer 24: 97–102.PubMedCrossRefGoogle Scholar
  39. Vose, B. M., Vânky, F., and Klein, E., 1977, Human tumour-lymphocyte interaction in vitro. V. Comparison of the reactivity of tumour infiltrating, blood and lymph node lymphocytes with autologous tumour cells, Int. J. Cancer 20: 895–902.PubMedCrossRefGoogle Scholar
  40. Zembala, M., Mytar, B., Popiela, T., and Asherson, G. L., 1977, Depressed in vitro peripheral blood lymphocyte response to mitogens in cancer patients: The role of suppressor cells, Int. J. Cancer 19: 605–613.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Ronald B. Herberman
    • 1
  • Howard T. Holden
    • 1
  • Luigi Varesio
    • 1
  • Tadayoshi Taniyama
    • 1
  • Paolo Puccetti
    • 1
  • Holger Kirchner
    • 1
  • James Gerson
    • 1
  • Sandra White
    • 1
  • Yona Keisari
    • 1
  • J. Stephen Haskill
    • 2
  1. 1.Laboratories of Immunodiagnosis and ImmunobiologyNational Cancer InstituteBethesdaUSA
  2. 2.Medical University of South CarolinaCharlestonUSA

Personalised recommendations