Advertisement

Separation of Individual Kinds of Cells from Tumors

  • Thomas G. PretlowII
  • Theresa P. Pretlow
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 10)

Abstract

Cancers are composed of malignant cells and many different kinds of stromal and infiltrating host cells. In the past, the biochemical investigation of cancers has been based predominately upon the analysis of homogenates of whole tumors. The biochemical characterization of malignant cells from tumors would be facilitated if methods could be developed for the purification of malignant cells from tumors to be studied. Similarly, study of the host’s infiltrating cells would be greatly facilitated by the development of methods for the purification of host cells from cancers. The culture of malignant cells from solid tumors has often been complicated by overgrowth of the malignant cells by host fibroblasts (Chaudhuri et al., 1974; Feller et al., 1972; Halpern et al.,1975; Herberman and Oldham, 1975; Lasfargues et al., 1972; Mavligit et al., 1975); presumably, this difficulty could be circumvented by the culture of malignant cells purified from tumors. Since 1969 (T. G. Pretlow and Boone, 1969), our laboratory has been interested in the development of methods for the purification of single kinds of cells from cancers. While we have had some experience in the separation of individual kinds of cells from transplantable tumors of experimental animals (T. G. Pretlow and Boone, 1970; Stewart et al., 1972; Zettergren et al., 1973; T. P. Pretlow et al., 1977a,b), there are several aspects of transplantable tumors which make their separation a much easier problem than the purification of cells from primary autochthonous tumors. In this review, we shall emphasize the purification of cells from autochthonous tumors. In addition, we shall emphasize work with human tumors. Rather than review the purification of cells from tumors in general, we shall focus on those techniques that are currently used in our laboratory,i.e., sedimentation and electrophoresis.

Keywords

Malignant Cell Electrophoretic Mobility Velocity Sedimentation Cell Separation Tissue Culture Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. F., and Spriggs, A. I., 1960, The differential diagnosis of tumour cells in circulating blood, J. Clin. Pathol. 13: 414.PubMedCrossRefGoogle Scholar
  2. Ambrose, E. J. (ed.), 1965, Cell Electrophoresis,Little, Brown, and Company, Boston.Google Scholar
  3. Ambrose, E. J., James, A. M., and Lowick, J. H. B., 1956, Differences between the electrical charge carried by normal and homologous tumour cells, Nature (London) 177:576.Google Scholar
  4. Andersson, L. C., Nordling, S., and Hayry, P., 1973a, Fractionation of mouse T and B lymphocytes by preparative cell electrophoresis. Efficiency of the method, Cell Immunol. 8:235.Google Scholar
  5. Andersson, L. C., Nordling, S., and Hayry, P., 1973b, Proliferation of B and T cells in mixed lymphocyte cultures, J. Exp. Med. 138: 324.PubMedCrossRefGoogle Scholar
  6. Andersson, L. C., Nordling, S., and Hayry, P., 1975, Electrophoretic fractionation of guinea pig lymphocytes: Evidence for different subsets of T and B cells in spleen and lymph node, J. Immunol. 114: 1226.Google Scholar
  7. Arnold, R., 1965, Pathological haemocytopherograms of rats and mice, in: Cell Electro-phoresis, ( E. J. Ambrose, ed.), p. 36, Little, Brown and Company, Boston.Google Scholar
  8. Ben-Or, S., Eisenberg, S., and Doljanski, F., 1960, Electrophoretic mobilities of normal and regenerating liver cells, Nature (London) 188:1200.Google Scholar
  9. Berg, J. W., 1959, Inflammation and prognosis in breast cancer. A search for host resistance, Cancer 12:714.Google Scholar
  10. Black, M. M., Opler, S. R., and Speer, F. D., 1955, Survival in breast cancer cases in relation to the structure of the primary tumor and regional lymph nodes, Surg. Gynecol. Obstet. 100:543.Google Scholar
  11. Blazar, B. A., and Heppner, G. H., 1978a, In situ lymphoid cells of mouse mammary tumors. I. Development and evaluation of a method for the separation of lymphoid cells from mouse mammary tumors, J. Immunol. 120: 1876.Google Scholar
  12. Blazar, B. A., and Heppner, G. H., 1978b, In situ lymphoid cells of mouse mammary tumors. II. The characterization of lymphoid cells separated from mouse mammary tumors, J. Immunol. 120: 1881.Google Scholar
  13. Blazar, B. A., Miller, F. R., and Heppner, G. H., 1978, In situ lymphoid cells of mouse mammary tumors. III. In vitro stimulation of tumor cell survival by lymphoid cells separated from mammary tumors, J. Immunol. 120: 1887.Google Scholar
  14. Boltz, R. C. Jr., Todd, P., Streibel, M. G., and Louie, M. K., 1973, Preparative electrophoresis of living mammalian cells in a stationary ficoll gradient, Prep. Biochem. 3: 383.PubMedCrossRefGoogle Scholar
  15. Bosmann, H. B., Bieber, G. F., Brown, A. E., Case, K. R., Gersten, D. M., Kimmerer, T. W., and Lione, A., 1973, Biochemical parameters correlated with tumour cell implantation, Nature (London) 246: 487.CrossRefGoogle Scholar
  16. Brattain, M. G., Kimball, P. M., Pretlow, T. G., II, and Pitts, A. M., 1977a, Partial purifica-tion of human colonic carcinoma cells by sedimentation, Br. J. Cancer 35:850.Google Scholar
  17. Brattain, M. G., Pretlow, T. P., and Pretlow, T. G., II, 1977b, Cell fractionation of large bowel cancer, Cancer 40: 2479.PubMedCrossRefGoogle Scholar
  18. Brattain, M. G., Kimball, P. M., and Pretlow, T. G., II, 1977c, ß-Hexosaminidase isozymes in human colonic carcinoma, Cancer Res. 37: 731.PubMedGoogle Scholar
  19. Brattain, M. G., Kimball, P. M., Durant, J. R., Pretlow, T. G., II, Smith, D., Carpenter, J., and Marks, M., 1979, Urinary hexosaminidase in patients with lung carcinoma, Cancer 44: 2267.PubMedCrossRefGoogle Scholar
  20. Brown, H. C., and Broom, J. C., 1935, The importance of electric charge in certain aspects of immunity, Trans. R. Soc. Trop. Med. Hyg. 28: 357.CrossRefGoogle Scholar
  21. Carney, P. G., and Malmgren, R. A., 1967, Comparison of techniques for obtaining single cell suspensions from tumors, Transplantation 5: 455.PubMedCrossRefGoogle Scholar
  22. Carstensen, E. L., Fuhrmann, G. F., Smearing, R. W., and Klein, L. A., 1968, The influence of conductivity on the electrophoretic mobility of red blood cells, Biochim. Biophys. Acta 156: 394.PubMedCrossRefGoogle Scholar
  23. Catsimpoolas, N., and Griffith, A. L., 1977, Preparative density gradient electrophoresis and velocity sedimentation at unit gravity of mammalian cells, in: Methods of Cell Separation, Vol. I ( N. Catsimpoolas, ed.), p. 1, Plenum Press, New York.Google Scholar
  24. Chalkley, H. W., 1943, Method for the quantitative morphologic analysis of tissues, J. Natl. Cancer Inst. 4: 47.Google Scholar
  25. Chaudhuri, S., Koprowska, I., Putong, P. B., and Townsend, D. E. R., 1974, Human in vitro system for the detection of uterine cervical preinvasive carcinoma, Cancer Res. 34: 1335.PubMedGoogle Scholar
  26. Cook, G. M. W., and Jacobson, W., 1968, The electrophoretic mobility of normal and leukaemic cells of mice, Biochem. J. 107: 549.PubMedGoogle Scholar
  27. Cook, G. M. W., Heard, D. H., and Seaman, G. V. F., 1962, The electrokinetic characterization of Ehrlich ascites carcinoma cell, Exp. Cell Res. 28: 27.PubMedCrossRefGoogle Scholar
  28. Davis, J., and Ralph, R. K., 1975, Regulation of growth of mouse mastocytoma cells, Cancer Res. 35: 1495.PubMedGoogle Scholar
  29. de Duve, C., 1971, Tissue fractionation. Past and present, J. Cell Biol. 50: 20D.Google Scholar
  30. Droege, W., Zucker, R., and Jauker, U., 1974a, Cellular composition of the mouse thymus:Google Scholar
  31. Developmental changes and the effect of hydrocortisone, Cell. Immunol. 12:173.Google Scholar
  32. Droege, W., Zucker, R., and Hannig, K., 1974b, Developmental changes in the cellular composition of the chicken thymus, Cell. Immunol. 12: 186.PubMedCrossRefGoogle Scholar
  33. Eisenberg, S., Ben-Or, S., and Doljanski, F., 1962, Electro-kinetic properties of cells in growth processes. I. The electrophoretic behavior of liver cells during regeneration and post-natal growth, Exp. Cell Res. 26: 451.PubMedCrossRefGoogle Scholar
  34. Fawcett, D. W., and Vallee, B. L., 1952, Studies on the separation of cell types in serosanguinous fluids, blood, and vaginal fluids by flotation on bovine plasma albumin, J. Lab. Clin. Med. 39: 354.PubMedGoogle Scholar
  35. Fawcett, D. W., Vallee, B. L., and Soule, M. H., 1950, A method for concentration and segregation of malignant cells from bloody, pleural, and peritoneal fluids, Science 111: 34.PubMedCrossRefGoogle Scholar
  36. Fayet, G., Pacheco, H., and Tixier, R., 1970, Sur la reassociation in vitro des cellules isolees de thyroide de porc et la thyrogloubline. I. Conditions pour l’induction des reassociations cellulaires par la thyreostimuline, Bull. Soc. Chim. Biol. 52: 299.PubMedGoogle Scholar
  37. Feller, W. F., Stewart, S. E., and Kantor, J., 1972, Primary tissue culture expiants of human breast cancer, J. Natl. Cancer Inst. 48: 1117.PubMedGoogle Scholar
  38. Fidler, I. J., 1973, Selection of successive tumour lines for metastasis, Nature (London) New Biol. 242:148.Google Scholar
  39. Forrester, J. A., Ambrose, E. J. and Macpherson, J. A., 1962, Electrophoretic investigations of a clone of hamster fibroblasts and polyoma-transformed cells from the same population, Nature (London) 196:1068.Google Scholar
  40. Fuhrmann, G. F., 1965, Cytopherograms of normal, proliferating and malignant rat liver cells, in: Cell Electrophoresis ( E. J. Ambrose, ed.), p. 92, Little Brown and Company, Boston.Google Scholar
  41. Ganser, M., Hannig, K., Krusmann, W. F., Pascher, G., and Ruhenstroth-Bauer, G., 1968, The separation of blood cells using continuous carrier-free flow electrophoresis, Klin. Wochenschr. 46:809.Google Scholar
  42. Gerstl, B., Switzer, P., and Yesner, R., 1974, A morphometric study of pulmonary cancer, Cancer Res. 34: 248.PubMedGoogle Scholar
  43. Gerstl, B., Wong, S., and Yesner, R., 1976, Quantitative microscopy of epidermoid lung carcinoma: Correlation with survival time, J. Natl. Cancer Inst. 56: 463.PubMedGoogle Scholar
  44. Gibofsky, A., and Terasaki, P. I. 1972, Trypsinization of lymphocytes for HL-A typing, Transplantation 13:192.Google Scholar
  45. Girard-Mangin, M., and Henri, M. V., 1904, Etude du phenomene d’agglutination. I. Ag-glutination des globules rouges par l’hydrate ferrique colloidal, C. R. Soc. Biol. 56:866.Google Scholar
  46. Grdina, D. J., Milas, L., Mason, K. A., and Withers, H. R., 1974, Separation of cells from a fibrosarcoma in Renografin density gradients, J. Natl. Cancer Inst. 52:253.Google Scholar
  47. Grdina, D. J., Basic, I., Mason, K. A., and Withers, H. R., 1975, Radiation response of clonogenic cell populations separated from a fibrosarcoma, Radiat. Res. 63: 483.Google Scholar
  48. Grdina, D. J., Basic, I., Guzzino, S., and Mason, K. A., 1976, Radiation response of cell populations irradiated in situ and separated from a fibrosarcoma, Radiat. Res. 66: 634.Google Scholar
  49. Grdina, D. J., Hittelman, W. N., White, R. A., and Meistrich, M. L., 1977, Relevance of density, size, and DNA content of tumour cells to the lung colony assay, Br. J. Cancer 36: 659.PubMedCrossRefGoogle Scholar
  50. Grdina, D. J., Linde, S., and Mason, K., 1978, Response of selected tumour cell populations separated from a fibrosarcoma following irradiation in situ with fast neutrons, Br. J. Radiol. 51:291.Google Scholar
  51. Halpern, B. C., Ezzell, R., Hardy, D. N., Clark, B. R., Ashe, H., Halpern, R. M., and Smith, R. A., 1975, Effect of methionine replacement by homocysine in cultures containing both malignant rat breast carcinosarcoma (Walker-256) cells and normal adult rat liver fibroblasts, In Vitro 11:14.Google Scholar
  52. Hamilton, W. A., and Sale, A. J. H., 1967, Effects of high electric fields on microorganisms. II. Mechanism of action of the lethal effect, Biochim. Biophys. Acta. 148:789.Google Scholar
  53. Hannig, K., 1964, Eine neuentwicklung der tragerfreien kontinuierlichen elektrophorese, Hoppe-Seyler’s Z. Physiol. Chem. 338:211.Google Scholar
  54. Hannig, K., 1967, Preparative electrophoresis, in: Electrophoresis: Theory, Methods, and Applications, Vol. 2 ( M. Bier, ed.), p. 423, Academic Press, New York.Google Scholar
  55. Hannig, K., 1969, The application of free-flow electrophoresis to the separation of macromolecules and particles of biological importance, in: Modern Separation Methods of Macromolecules and Particles, Vol. 2 (T. Gerritson, ed.), p. 45, Wiley-Interscience, New York.Google Scholar
  56. Hannig, K., 1971, Free-flow electrophoresis. A technique for continuous preparative and analytical separation, in: Methods in Microbiology, Vol. 513 (J. R. Norris and D. W. Ribbons, eds.), p. 513, Academic Press, New York.Google Scholar
  57. Hannig, K., 1972, Separation of cells and particles by continuous free-flow electrophoresis, in: Techniques of Biochemical and Biophysical Morphology, Vol. 1 ( D. Glick and R. M. Rosenbaum, eds.), p. 191, Wiley-Interscience, New York.Google Scholar
  58. Hannig, K., and Krusmann, W-F., 1968, Die anwendung der tragerfreien kontinuierlichen elektrophorese zur auftrennung der weiben blutzellen aus humanblut, Hoppe-Seyler’s Z. Physiol. Chem. 349: 161.PubMedCrossRefGoogle Scholar
  59. Hannig, K., and Zeiller, K., 1969, Separation and characterization of immunocompetent cells with the aid of the free-flow continuous electrophoresis, Hoppe-Seyler’s Z. Physiol. Chem. 350: 467.PubMedCrossRefGoogle Scholar
  60. Hannig, K., Wirth, H., Meyer, B-H., and Zeiller, K., 1975, Free-flow electrophoresis. I. Theoretical and experimental investigations of the influence of mechanical and electrokinetic variables on the efficiency of the method, Hoppe-Seyler’s Z. Physiol. Chem. 356: 1209.PubMedCrossRefGoogle Scholar
  61. Hartveit, F., Cater, D. B., and Mehrishi, J. N., 1968, Changes in the electrophoretic mobility of mouse lymphocytes, thymocytes, macrophages, and tumour cells following immunisation, Br. J. Exp. Pathol. 49: 634.PubMedGoogle Scholar
  62. Haskill, J. S., 1977, ADCC effector cells in a murine adenocarcinoma. I. Evidence for blood-borne bone-marrow-derived monocytes, Int. J. Cancer 20: 432.PubMedCrossRefGoogle Scholar
  63. Haskill, J. S., Proctor, J. W., and Yamamura, Y., 1975a, Host responses within solid tumors. I. Monocytic effector cells within rat sarcomas, J. Natl. Cancer Inst. 54: 387.PubMedGoogle Scholar
  64. Haskill, J. S., Yamamura, Y., and Radov, L., 1975b, Host responses within solid tumors: Non-thymus-derived specific cytotoxic cells within a murine mammary adenocarcinoma, Int. J. Cancer 16: 798.PubMedCrossRefGoogle Scholar
  65. Haskill, J. S., Yamamura, Y., Radov, L., and Parthenais, E., 1976, Discussion paper: Are peripheral and in situ tumor immunity related? Ann. N.Y. Acad. Sci. 276: 373.PubMedCrossRefGoogle Scholar
  66. Hayry, P., and Andersson, L. C., 1975, Generation of T memory cells in one-way mixed lymphocyte culture. III. Homing and lifetime of “secondary” lymphocytes, Cell. Immunol. 17: 165.PubMedCrossRefGoogle Scholar
  67. Hayry, P., Penttinen, K., and Saxen, E., 1965, The different effects of some methods of disaggregation on the electrophoretic mobility of the HeLa-cell, Ann. Med. Exp. Fenn. 43: 91.PubMedGoogle Scholar
  68. Hayry, P., Andersson, L. C., and Nordling, S., 1973, Electrophoretic fractionation of mouse T and B lymphocytes. Efficiency of the method and purity of separated cells, Transpl. Proc. 5: 87.Google Scholar
  69. Hayry, P., Andersson, L. C., Gahmberg, C., Roberts, P., Ranki, A., and Nordling, S., 1975a, Fractionation of immunocompentent cells by free-flow cell electrophoresis, Isr. J. Med. Sci. 11: 1299.PubMedGoogle Scholar
  70. Hayry, P., Kontiainen, S., Nordling, S., and Andersson, L. C., 1975b, Comparison between thymus-dependent and thymus-independent lymphocytes as stimulator cells in allogeneic mixed lymphocyte culture, Acta Pathol. Microbiol. Scand. Sect. C 83: 249.Google Scholar
  71. Heard, D. H., Seaman, G. V. F., and Simon-Reuss, I., 1961, Electrophoretic mobility of cultured mesodermal tissue cells, Nature (London) 190: 1009.CrossRefGoogle Scholar
  72. Heidrich, H.-G., and Dew, M. E., 1977, Homogeneous cell populations from rabbit kidney cortex. Proximal, distal tubule, and renin-active cell isolated by free-flow electrophoresis, J. Cell Biol. 74: 780.PubMedCrossRefGoogle Scholar
  73. Heisto, H., Jensen, L., and Knuds, F., 1971, Studies on trypsin treatment of red cells with special reference to differences between trypsin preparations, Vox Sang. 21: 115.PubMedCrossRefGoogle Scholar
  74. Helms, S. R., Brazeal, F. I., Bueschen, A. J., and Pretlow, T. G., II, 1975, Separation of cells with histochemically demonstrable acid phosphatase activity from suspensions of human prostatic cells in an isokinetic gradient of Ficoll in tissue culture medium, Am. J. Pathol. 80: 79.PubMedGoogle Scholar
  75. Helms, S. R., Pretlow, T. G., II, Bueschen, A. J., Lloyd, K. L., and Murad, T. M., 1976, Separation of cells with histochemically demonstrable acid phosphatase activity fromGoogle Scholar
  76. suspensions of cells from human prostatic carcinomas in an isokinetic gradient of Ficoll in tissue culture medium, Cancer Res. 36:481.Google Scholar
  77. Helms, S. R., Brattain, M. G., Pretlow, T. G., II, and Kreisberg, J. I., 1977, “Prostatic acid phosphatase?” A comparison of acid phosphatase activities in epithelial cells, granulocytes, monocytes, lymphocytes, and platelets purified by velocity sedimentation in isokinetic gradients of Ficoll in tissue culture medium, Am. J. Pathol. 88: 529.PubMedGoogle Scholar
  78. Helting, T., Ogren, S., Lindahl, U., Pertoft, H., and Laurent, T., 1972, Glycosaminoglycan synthesis in mouse mastocytoma, Biochem. J. 126: 587.PubMedGoogle Scholar
  79. Herberman, R. B., and Oldham, R. K., 1975, Problems associated with study of cell-mediated immunity to human tumors by microcytotoxicity assays. J. Natl. Cancer Inst. 55:749.Google Scholar
  80. Herve, P., Masse, M., Lenys, R., and Peters, A., 1975, Application des methodes preparatives en veine liquide a la separation des cellules sanguines, Rev. Fr. Transfus. Immunohematol. 18: 439.PubMedCrossRefGoogle Scholar
  81. Hilfer, S. R., and Brown, J. M., 1971, Collagenase. Its effectiveness as a dispersing agent for embryonic chick thyroid and heart, Exp. Cell Res. 65: 246.PubMedCrossRefGoogle Scholar
  82. Holden, H. T., Haskill, J. S., Kirchner, H., and Herberman, R. B., 1976, Two functionally distinct anti-tumor effector cells isolated from primary murine sarcoma virus-induced tumors, J. Immunol. 117: 440.PubMedGoogle Scholar
  83. Hommes, F. A., Draisma, M. I., and Molenaar, I., 1970, Preparation and some properties of isolated rat liver cells, Biochim. Biophys. Acta 222: 361.PubMedCrossRefGoogle Scholar
  84. Hughes, R. C., Sanford, B., and Jeanloz, R. W., 1972, Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase, Proc. Natl. Acad. Sci. USA 69: 942.PubMedCrossRefGoogle Scholar
  85. Ioachim, H. L., 1976, The stromal reaction of tumors: An expression of immune surveillance, J. Natl. Cancer Inst. 57: 465.PubMedGoogle Scholar
  86. Ioachim, H. L., Dorsett, B. H., and Paluch, E., 1976, The immune response at the tumor site in lung carcinoma, Cancer 38: 2296.PubMedCrossRefGoogle Scholar
  87. Just, W. W., León-V., J. O., and Werner, G., 1975, Isoelectric focusing in continuous-flow electrophoresis. I. Separation of mixed red blood cells of different species, Anal. Biochem. 67: 590.Google Scholar
  88. Katz, D. H., Order, S. E., Graves, M., and Benacerraf, B., 1973, Purification of Hodgkin’s disease tumor-associated antigens, Proc. Natl. Acad. Sci. USA 70: 396.PubMedCrossRefGoogle Scholar
  89. Kloppenborg, P. W. C., Island, D. P., Liddle, G. W., Michelakis, A. M., and Nicholson, W. E., 1968, A method of preparing adrenal cell suspensions and its applicability to the in vitro study of adrenal metabolism, Endocrinology 82: 1053.PubMedCrossRefGoogle Scholar
  90. Knutson, F., Lundin, P. M., and Norrby, K., 1971, Syngeneic serum and ascitic fluid in enzymatically produced tumour cell suspensions, Pathol. Eur. 6: 34.PubMedGoogle Scholar
  91. Kono, T., 1969, Roles of collagenases and other proteolytic enzymes in the dispersal of animal tissues, Biochim. Biophys. Acta 178: 397.PubMedCrossRefGoogle Scholar
  92. Kono, T., and Barham, F. W., 1971, The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells, J. Biol. Chem. 246: 6210.PubMedGoogle Scholar
  93. Kreisberg, J. I., Pitts, A. M., and Pretlow, T. G., II, 1977a, Separation of proximal tubule cells from suspensions of rat kidney cells in density gradients of Ficoll in tissue culture medium, Am. J. Pathol. 86: 591.PubMedGoogle Scholar
  94. Kreisberg, J. I., Sachs, G., Pretlow, T. G., II, and McGuire, R. A., 1977b, Separation of proximal tubule cells from suspensions of rat kidney cells by free-flow electrophoresis, J. Cell. Physiol. 93: 169.PubMedCrossRefGoogle Scholar
  95. Lasfargues, E. Y., Coutinho, W. G., and Moore, D. H., 1972, Pitfalls in the isolation of a human breast carcinoma virus in tissue culture, J. Natl. Cancer Inst. 48: 1101.PubMedGoogle Scholar
  96. Latner, A. L., and Turner, G. A., 1974, Surface modification and electrophoresis of normal and transformed BHK21 cells, J. Cell Sci. 14: 203.PubMedGoogle Scholar
  97. Leif, R. C., 1970, Buoyant density separation of cells, in: Automated Cell Identification and Cell Sorting ( G. L. Wied and G. F. Bahr, eds.), p. 21, Academic Press, New York.Google Scholar
  98. Leise, E. M., and LeSane, F., 1974, Isoelectric focusing of peripheral lymphocytes, Prep. Biochem. 4: 395.PubMedCrossRefGoogle Scholar
  99. Lichtman, M. A., and Weed, R. I., 1970, Electrophoretic mobility and N-acetyl neuraminic acid content of human normal and leukemic lymphocytes and granulocytes, Blood 35: 12.PubMedGoogle Scholar
  100. Lillie, R. S., 1902, On differences in the direction of the electrical convection of certain free cells and nuclei, Am. J. Physiol. 8: 273.Google Scholar
  101. Lindahl, P. E., 1948, Principle of a counter-streaming centrifuge for the separation of particles of different sizes, Nature (London) 161: 648.CrossRefGoogle Scholar
  102. Lindahl, P. E., 1962, Lipid content in hyperdiploid and hypertetraploid cells isolated from the hyperdiploid Ehrlich ascites tumour, Nature (London) 194: 589.CrossRefGoogle Scholar
  103. Lindahl, P. E., and Klein, G., 1955, Separation of Ehrlich ascites tumour cells from other cellular elements, Nature (London) 176:401.Google Scholar
  104. Lowick, J. H. B., Purdom, L., James, A. M., and Ambrose, E. J., 1961, Some microelectrophoretic studies of normal and tumour cells, J. R. Microsc. Soc. 80: 47.CrossRefGoogle Scholar
  105. MacDonald, H. R., Howell, R. L., and McFarlane, D. L., 1978, The multicellular spheroid as a model tumor allograft, Transplantation 25: 141.PubMedCrossRefGoogle Scholar
  106. Maslow, D. E., 1970, Electrokinetic surfaces of trypsin-dissociated embryonic chick liver cells, Exp. Cell Res. 61: 266.PubMedCrossRefGoogle Scholar
  107. Mavligit, G. M., Gutterman, J. U., and Hersh, E. M., 1973, Separation of viable from non- viable tumor cells using Ficoll-Hypaque density solution, Immunol. Commun. 2: 463.PubMedGoogle Scholar
  108. Mavligit, G. M., Barsales, P. B., Gutterman, J. U., Mackay, B., and Hersh, E. M., 1975, A rapid method for establishing short-term primary cultures of human tumor cells from fresh tumor biopsies, Proc. Soc. Exp. Biol. Med. 150: 597.PubMedGoogle Scholar
  109. Mayhew, E., 1968, Electrophoretic mobility of Ehrlich ascites carcinoma cells grown in vitro or in vivo, Cancer Res. 28: 1590.PubMedGoogle Scholar
  110. McClay, D. R., Gooding, L. R., and Fransen, M. E., 1977, A requirement for trypsin-sensitive cell-surface components for cell-cell interactions of embryonic neural retina cells. J. Cell Biol. 75: 56.PubMedCrossRefGoogle Scholar
  111. McGuire, R. A., Jr., Pretlow, T. G., H, Wareing, T. H., and Bradley, E. L., 1979, Hodgkin’s cells and attached lymphocytes: A possible prognostic indicator in splenic tumor, Cancer 44: 183.Google Scholar
  112. Mehrishi, J. N., and Thomson, A. E. R., 1968, Relationship between pH and electrophoretic mobility for lymphocytes circulating in chornic lymphocytic leukaemia, Nature (London) 219: 1080.CrossRefGoogle Scholar
  113. Mehrishi, J. N., and Zeiller, K., 1974, T and B lymphocytes: Striking differences in surface membranes, Br. Med. J. 1:360.Google Scholar
  114. Meistrich, M. L., Grdina, D. J., Meyn, R. E., and Barlogie, B., 1977, Separation of cells from mouse solid tumors by centrifugal elutriation, Cancer Res. 37: 4291.PubMedGoogle Scholar
  115. Melchers, F., Cone, R. E., von Boehmer, H., and Sprent, J., 1975, Immunoglobulin turnover in B lymphocyte subpopulations, Eur. J. Immunol. 5: 382.CrossRefGoogle Scholar
  116. Nairn, R. C., Nind, A. P. P., Guli, E. P. G., Muller, H. K., Rolland, J. M., and Minty, C. C. J., 1971, Specific immune response in human skin carcinoma, Br. Med. J. 4: 701.PubMedCrossRefGoogle Scholar
  117. Ng, C. E., and Inch, W. R., 1978, Comparison of the densities of clonogenic cells from EMT6 fibrosarcoma monolayer cultures, multicell spheroids, and solid tumors in Ficoll density gradients, J. Natl. Cancer Inst. 60: 1017.PubMedGoogle Scholar
  118. Nordling, S., Andersson, L. C., and Hayry, P., 1972, Thymus-dependent and thymus-inde-pendent lymphocyte separation: Relation to exposed sialic acid on cell surface, Science 178: 1001.PubMedCrossRefGoogle Scholar
  119. Norrby, K., Knutson, F., and Lundin, P. M., 1966, On the single cell state in enzymatically produced tumor cell suspensions, Exp. Cell Res. 44: 421.PubMedCrossRefGoogle Scholar
  120. Oppenheimer, S. B., and Humphreys, T., 1971, Isolation of specific macromolecules required for adhesion of mouse tumour cells, Nature (London) 232: 125.CrossRefGoogle Scholar
  121. Order, S. E., Porter, M., and Hellman, S., 1971, Hodgkin’s disease: Evidence for a tumor-associated antigen, N. Engl. J. Med. 285: 471.PubMedCrossRefGoogle Scholar
  122. Order, S., Chism, S. E., and Hellman, S., 1972, Studies of antigens associated with Hodgkin’s disease, Blood 40: 621.PubMedGoogle Scholar
  123. Osmond, D. G., Miller, R. G., and von Boehmer, H., 1975, Characterization of immunoglobulin-bearing and other small lymphocytes in mouse bone marrow by sedimentation and electrophoresis, J. Immunol. 114: 1230.PubMedGoogle Scholar
  124. Pertoft, H., 1970, Separation of cells from a mast cell tumor on density gradients of colloidal silica, J. Natl. Cancer Inst. 44: 1251.PubMedGoogle Scholar
  125. Pine, L., Taylor, G. C., Miller, D. M., Bradley, G., and Wetmore, H. R., 1969, Comparison of good and bad lots of trypsin used in the production of primary monkey kidney cells. A definition of the problem and comparison of certain enzymatic characteristics, Cytobios 2: 197.Google Scholar
  126. Pretlow, T. G., 1971, Estimation of experimental conditions that permit cell separations by velocity sedimentation on isokinetic gradients of Ficoll in tissue culture medium, Anal. Biochem. 41: 248.PubMedCrossRefGoogle Scholar
  127. Pretlow, T. G., II, 1978, Isolation of lymphocyte populations, Natl. Cancer Inst. Monogr. 49: 79.PubMedGoogle Scholar
  128. Pretlow, T. G., and Boone, C. W., 1969, Separation of mammalian cells using programmed gradient sedimentation, Exp. Mol. Pathol. 11: 139.PubMedCrossRefGoogle Scholar
  129. Pretlow, T. G., and Boone, C. W., 1970, Separation of malignant cells from transplantable rodent tumors, Exp. Mol. Pathol. 12: 249.PubMedCrossRefGoogle Scholar
  130. Pretlow, T. G., II, and Cassady, I. M., 1970, Separation of mast cells in successive stages of differentiation using programmed gradient sedimentation, Am. J. Pathol. 61: 323.PubMedGoogle Scholar
  131. Pretlow, T. G., II, and Pretlow, T. P., 1977, Separation of viable cells by velocity sedimentation in an isokinetic gradient of Ficoll in tissue culture medium, in: Biological Separations. Methods of Cell Separation, Vol. I ( N. Catsimpoolas, ed.), p. 171, Plenum Press, New York.Google Scholar
  132. Pretlow, T. G., Glick, M. R., and Reddy, W. J., 1972, Separation of beating cardiac myocytes from suspensions of heart cells, Am. J. Pathol. 67: 215.PubMedGoogle Scholar
  133. Pretlow, T. G., Luberoff, D. E., Hamilton, L. J., Weinberger, P. C., Maddox, W. A., and Durant, J. R., 1973, Pathogenesis of Hodgkin’s disease: Separation and culture of different kinds of cells from Hodgkin’s disease in a sterile isokinetic gradient of Ficoll in tissue culture medium, Cancer 31: 1120.PubMedCrossRefGoogle Scholar
  134. Pretlow, T. G., II, Jones, J., and Dow, S., 1974, Separation of cells having histochemically demonstrable glucose-6-phosphatase from suspensions of hamster kidney cells in an isokinetic density gradient of Ficoll in tissue culture medium, Am. J. Pathol. 74: 275.PubMedGoogle Scholar
  135. Pretlow, T. G., II, Weir, E. E., and Zettergren, J. G., 1975, Problems connected with the separation of different kinds of cells, Int. Rev. Exp. Pathol. 14: 91.PubMedGoogle Scholar
  136. Pretlow, T. G., II, Jones, C. M., and Pretlow, T. P., 1976, Separation of tumor cells by density gradient centrifugation: Recent work with human tumors and a discussion of the kind of quantitation needed in cell separation experiments, Biophys. Chem. 5: 99.PubMedCrossRefGoogle Scholar
  137. Pretlow, T. P., Glover, G. L., and Pretlow, T. G., II, 1977a, Separation of lymphocytes and mast cells from the Furth transplantable mast cell tumor in an isokinetic gradient of Ficoll in tissue culture medium, Cancer Res. 37: 578.PubMedGoogle Scholar
  138. Pretlow, T. P., Glover, G. L., and Pretlow, T. G., II 1977b, Purification of malignant cells and lymphocytes from a rat transplantable rnucinous adenocarcinoma of the colon by isokinetic sedimentation in gradients of Ficoll, J. Natl. Cancer Inst. 59:981.Google Scholar
  139. Pretlow, T. G., II, Pretlow, T. P., and Crockett, F., 1980, Electrophoretic separation of tonsillar cells, manuscript in preparation.Google Scholar
  140. Purdom, L., Ambrose, E. J., and Klein, G., 1958, A correlation between electrical surface charge and some biological characteristics during the stepwise progression of a mouse sarcoma, Nature (London) 181:1586.Google Scholar
  141. Roelants, G. E., Loor, F., von Boehmer, H., Sprent, J., Haag, L.-B., Mayor, K. S., and Ryden, A., 1975, Five types of lymphocytes Ig O, Ig-O+weak Ig-®+strong lg*O- and Ig*O*) characterized by double immunofluorescence and electrophoretic mobility. Organ distribution in normal and nude mice, Eur. J. ImmunoL 5: 127.PubMedCrossRefGoogle Scholar
  142. Rosenberg, S. A., and Rogentine, G. N., Jr., 1972, Natural human antibodies to “hidden” membrane components, Nature (London) New Biol. 239:203.Google Scholar
  143. Ruhenstroth-Bauer, G., 1965, The normal and pathological haemocytopherogram of man, in: Cell Electrophoresis ( E. J. Ambrose, ed.), p. 66, Little, Brown and Company, Boston.Google Scholar
  144. Russell, S. W., Gillespie, G. Y., Hansen, C. B., and Cochrane, C. G., 1976, Inflammatory cells in solid murine neoplasms. II. Cell types found throughout the course of Moloney sarcoma regression or progression, Int. J. Cancer 18:331.Google Scholar
  145. Schlegel, R. A., Shortman, K., Stocker, J. W., and Odgers, M., 1975a, Antigen-dependent B lymphocyte differentiation. A comparison of the electrophoretic mobilities of AFC-progenitors, induced AFC and background AFC specific for several antigens, Aust. J. Exp. Biol. Med. Sci. 53: 117.PubMedCrossRefGoogle Scholar
  146. Schlegel, R. A., von Boehmer, H., and Shortman, K., 1975b, Antigen-initiated B lymphocyte differentiation. V. Electrophoretic separation of different subpopulations of AFC progenitors for unprimed IgM and memory IgG responses to the NIP determinant, Cell. Immunol. 16:203.Google Scholar
  147. Schlesinger, M., and Gottesfeld, S., 1971, The effect of neuraminidase on expression of cellular antigens, Transpl. Proc. 3: 1151.Google Scholar
  148. Schubert, J. C. F., Walther, F., Holzberg, E., Pascher, G., and Zeiller, K., 1973, Preparative electrophoretic separation of normal and neoplastic human bone marrow cells, Klin. Wochenschr. 51:327.Google Scholar
  149. Seaman, G. V. F., and Uhlenbruck, G., 1963, The surface structure of erythrocytes from some animal sources, Arch. Biochem. Biophys. 100: 493.PubMedCrossRefGoogle Scholar
  150. Seiler, F. R., Johannsen, R., Sedlacek, H. H., and Zeiller, K., 1974, Characterization of lymphocyte subpopulations of nonhuman primates separated by free-flow electrophoresis, Transpl. Proc. 6: 173.Google Scholar
  151. Shafie, S. M., Gibson, S. L., and Hilf, R., 1977, Effect of insulin and estrogen on hormone binding in the R3230AC mammary adenocarcinoma, Cancer Res. 37: 4641.PubMedGoogle Scholar
  152. Sheridan, J. W., and Finlay-Jones, J. J., 1977, Studies on a fractionated murine fibrosarcoma: A reproducible method for the cautious and a caution for the unwary, J. Cell. Physiol. 90:535.Google Scholar
  153. Shortman, K., 1972, Physical Procedures for the separation of animal cells, Ann. Rev. Biophys. Bioeng. 1: 93.CrossRefGoogle Scholar
  154. Shortman, K., von Boehmer, H., Lipp, J., and Hopper, K., 1975, Subpopulations of T lymphocytes, Transpl. Rev. 25:163.Google Scholar
  155. Simon-Reuss, I. Cook, G. M. W., Seaman, G. V. F., and Heard, D. H., 1964, Electrophoretic studies on some types of mammalian tissue cell, Cancer Res. 24:2038.Google Scholar
  156. Soderman, D. D., Germershausen, J., Katzen, H. M., 1973, Affinity binding of intact fat cells and their ghosts to immobilized insulin, Proc. Natl. Acad. Sci. USA 70:792.Google Scholar
  157. Sorenby, L., and Lindahl, P. E., 1964, On the concentrating of ascites tumour cells in stages of pre-mitosis and mitosis by counter-streaming centrifugation, Exp. Cell Res. 35:214.Google Scholar
  158. Speicher, D. W., and McCarl, R. L., 1974, Pancreatic enzyme requirements for the dissocia-tion of rat hearts for culture, In Vitro 10: 30.PubMedCrossRefGoogle Scholar
  159. Spriggs, A. I., and Alexander, R. F., 1960, An albumin gradient method for separating the different white cells of blood, applied to the concentration of circulating tumour cells, Nature (London) 188: 863.Google Scholar
  160. Stein, G., 1975a, Separation of human lymphoid cells by preparative cell electrophoresis. II. Free-flow electrophoretic separation of human blood cells, Biomedicine 23: 5.PubMedGoogle Scholar
  161. Stein, G., 1975b, Separation of human lymphoid cells by preparative cell electrophoresis, Z. Immunol. Forsch. 150:68.Google Scholar
  162. Stein, G., Flad, H. D., Pabst, R., and Trepel, F., 1973, Separation of human lymphocytes by free-flow electrophoresis, Biomedicine 19:388.Google Scholar
  163. Stewart, M. J., Pretlow, T. G., II, and Hiramoto, R., 1972, Separation of ascites myeloma cells, lymphocytes and macrophages by zonal centrifugation on an isokinetic gradient, Am. J. Pathol. 68: 163.PubMedGoogle Scholar
  164. Suzuki, N., Frapart, M., Grdina, D. J., Meistrich, M. L., and Withers, H. R., 1977, Cell cycle dependency of metastatic lung colony formation, Cancer Res. 37:3690.Google Scholar
  165. Thompson, K., Ceriani, R. L., Wong, D., and Abraham, S., 1976, Immunologic methods for the identification of cell types. I. Specific antibodies that distinguish between mammary gland epithelial cells and fibroblasts, J. Natl. Cancer Inst. 57: 167.Google Scholar
  166. Tulp, A., and Welagen, J. J. M. N., 1976, Fractionation of ascites tumour cells at lg: Separation of cells in specific stages of the life cycle, Eur. J. Cancer 12:519.Google Scholar
  167. Turner, M. J., Stroominger, J. L., and Sanderson, A. R., 1972, Enzymic removal and re-expression of a histocompatibility antigen, HL-A 2, at the surface of human peripheral lymphocytes, Proc. Natl. Acad. Sci. USA 69: 200.Google Scholar
  168. Underwood, J. C. E., 1972, A morphometric analysis of human breast carcinoma, Br. J. Cancer 26: 234.PubMedCrossRefGoogle Scholar
  169. Underwood, J. C. E., 1974, Lymphoreticular infiltration in human tumours: Prognostic and biological implications: A review, Br. J. Cancer 30:538.Google Scholar
  170. Vaage, J., 1968, A mechanical technique for obtaining high yields of viable, dispersed tumor cells, Transplantation 6: 137.PubMedCrossRefGoogle Scholar
  171. Vallee, B. L., Hughes, W. L., Jr., and Gibson, J. G., II 1947, A method for the separation of leukocytes from whole blood by flotation on serum albumin, Blood (Special Issue) 1:82.Google Scholar
  172. Vassar, P. S., 1963, The electric charge density of human tumor cell surfaces, Lab. Invest. 12:1072.Google Scholar
  173. Vassar, P. S., Hards, J. M., and Seaman, G. V. F., 1973, Surface properties of human lymphocytes, Biochem. Biophys. Acta 291:107.Google Scholar
  174. von Boehmer, H., 1974, Separation of T and B lymphocytes and their role in the mixed lymphocyte reaction, J. Immunol. 112:70.Google Scholar
  175. von Boehmer, H., Shortman, K., and Nossal, G. J. V., 1974, The separation of different cell classes from lymphoid organs. X. Preparative electrophoretic separation of lymphocyte subpopulations from mouse spleen and thoracic duct lymph, J. Cell. Physiol. 83: 231.PubMedCrossRefGoogle Scholar
  176. Wallach, D. F. H., and Esandi, M. V. D. P., 1964, Sialic acid and the electrophoretic mobility of three tumor cell types, Biochim. Biophys. Acta 83: 363.PubMedGoogle Scholar
  177. Waymouth, C., 1974, To disaggregate or not to disaggregate. Injury and cell disaggregation, transient or permanent? In Vitro 10:97.Google Scholar
  178. Weibel, E. R. 1963, Principles and methods for the morphometric study of the lung and other organs, Lab. Invest. 12:131.Google Scholar
  179. Weibel, E. R., Kistler, G. S., and Scherle, W. F., 1966, Practical stereological methods for morphometric cytology, J. Cell Biol. 30: 23.PubMedCrossRefGoogle Scholar
  180. Weiss, L., 1966, Effect of temperature on cellular electrophoretic mobility phenomena, J. Natl. Cancer Inst. 36: 837.Google Scholar
  181. Weiss, L., and Horoszewicz, J. S., 1971, Some biophysical aspects of E-B virus adsorption to the surfaces of three types of mammalian cells, Int. J. Cancer 7:149.Google Scholar
  182. Weiss, L., Zeigel, R., Jung, O. S., and Bross, I. D. J., 1972, Binding of positively charged particles to glutaraldehyde-fixed human erythrocytes, Exp. Cell Res. 70: 57.PubMedCrossRefGoogle Scholar
  183. Wells, J. R., Opelz, G., and Cline, M. J., 1977, Characterization of functionally distinct lymphoid and myeloid cells from human blood and bone marrow. II. Separation by velocity sedimentation, J. Immunol. Meth. 18: 79.CrossRefGoogle Scholar
  184. Wepsic, H. T., 1970, Separation of viable tumor cells from non-viable tumor cells by flotatation on bovine serum albumin. A short communication, J. Natl. Cancer Inst. 45: 1031.PubMedGoogle Scholar
  185. Wiig, J. N., 1974, Effect of neuraminidase on lymphoid cells, Scand J. Immunol. 3: 357.PubMedCrossRefGoogle Scholar
  186. Willson, J. K. V., Luberoff, D. E., Pitts, A., and Pretlow, T. G., 1975, A method for the separation of lymphocytes and plasma cells from the human palatine tonsil using sedimentation in an isokinetic gradient of Ficoll in tissue culture medium, Immunology 28: 161.PubMedGoogle Scholar
  187. Willson, J. K. V., Pretlow, T. G., II, Zaremba, J. L., and Brattain, M. G., 1976a, Heterogeneity among preparations of crude trypsin used to disaggregate the human tonsil, Immunology 30: 157.PubMedGoogle Scholar
  188. Willson, J. K. V., Jr., Zaremba, J. L., Pitts, A. M., and Pretlow, T. G., II, 1976b, A characterization of human tonsillar lymphocytes after separation from other tonsillar cells in an isokinetic gradient of Ficoll in tissue culture medium, Am. J. Pathol. 83: 341.PubMedGoogle Scholar
  189. Willson, J. K. V., Jr., Zaremba, J. L., and Pretlow, T. G., II, 1977, Functional characterization of cells separated from suspensions of Hodgkin disease tumor cells in an isokinetic gradient, Blood 50: 783.PubMedGoogle Scholar
  190. Wolff, D. A., 1977, Rapid separation of living cells by colloidal silica density gradient centrifugation, Tissue Cult. Assoc. Man. 3: 717.CrossRefGoogle Scholar
  191. Woo, J., and Cater, D. B., 1972, A study of the cell surface of tumour, foetal and lymph-node cells by cell electrophoresis after antibody and enzymic treatment, Biochem. J. 128: 1273.PubMedGoogle Scholar
  192. Yarlott, M. A., Jr., and McKhann, C. F., 1976, Discussion paper: In vitro augmentation of tumor immunity in a murine methylcholanthrene sarcoma system, Ann. N.Y. Acad. Sci. 277:533.Google Scholar
  193. Zeiller, K., and Hannig, K., 1971, Free-flow electrophoretic separation of lymphocytes. Evidence for specific organ distributions of lymphoid cells, Hoppe-Seyler’s Z. Physiol. Chem. 352:1162.Google Scholar
  194. Zeiller, K., and Pascher, G., 1973, Detection of T and B cell-specific heteroantigens on electrophoretically separated lymphocytes of the mouse, Eur. J. Immunol. 3:614.Google Scholar
  195. Zeiller, K., Pascher, G., and Hannig, K., 1970, The formation of 19S hemolysin-producing cells in intestinal lymph nodes of the rat, Hoppe-Seyler’s Z. Physiol. Chem. 351:435.Google Scholar
  196. Zeiller, K., Hannig, K., and Pascher, G., 1971, Free-flow electrophoretic separation of lymphocytes. Separation of graft versus host reactive lymphocytes of rat spleens, Hoppe-Seyler’s Z. Physiol. Chem. 352:1168.Google Scholar
  197. Zeiller, K., Holzberg, E., Pascher, G., and Hannig, K., 1972a, Free-flow electrophoretic separation of T and B lymphocytes. Evidence for various subpopulations of B cells, Hoppe-Seyler’s Z. Physiol. Chem. 353:105.Google Scholar
  198. Zeiller, K., Pascher, G., and Hannig, K., 1972b, Preparative electrophoretic separation of antibody forming cells, Prep. Biochem. 2:21.Google Scholar
  199. Zeiller, K., Schubert, J. C. F., Walther, F., and Hannig, K., 1972c, Free-flow electrophoretic separation of bone marrow cells. Electrophoretic distribution analysis of in vivo colony forming cells in mouse bone marrow, Hoppe-Seyler’s Z. Physiol. Chem. 353:95.Google Scholar
  200. Zeiller, K., Pascher, G., Wagner, G., Liebich, H. G., Holzberg, E., and Hannig, K., 1974, Distinct subpopulations of thymus-dependent lymphocytes. Tracing of the differentiation pathway of T cells by use of preparatively electrophoretically separated mouse lymphocytes, Immunology 26:995.Google Scholar
  201. Zeiller, K., Loser, R., Pascher, G., and Hannig, K., 1975a, Free-flow electrophoresis. II. Analysis of the method with respect to preparative cell separation, Hoppe-Seyler’s Z. Physiol. Chem. 356:1225.Google Scholar
  202. Zeiller, K., Schindler, R. K., and Liebich, H.-G., 1975b, The T lymphocyte surface in development. A study of the electrokinetic, antigenic and ultrastructural properties of T lymphocytes in mouse thymus and lymph nodes, Isr. J. Med. Sci. 11:1242.Google Scholar
  203. Zeiller, K., Pascher, G., and Hannig, K., 1976, B lymphocyte subpopulations in the mouse spleen. A study of the differentiation pathway using free flow electrophoretically separated subpopulations of direct PFC progenitor cells, Immunology 31:863.Google Scholar
  204. Zettergren, J. G., Luberoff, D. E., and Pretlow, T. G., 1973, Separation of lymphocytes from disaggregated mouse malignant neoplasms by sedimentation in gradients in Ficoll in tissue culture medium, J. Immunol. 111:836.Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Thomas G. PretlowII
    • 1
  • Theresa P. Pretlow
    • 1
  1. 1.Department of PathologyUniversity of Alabama in BirminghamBirminghamUSA

Personalised recommendations