Advertisement

Superconductive Devices and Materials

  • Richard Dalven

Abstract

This chapter discusses some of the applications of superconductivity. After a brief review, the wave function for a condensed phase of Cooper pairs is introduced and used to discuss the Josephson effects. The physics of the DC and AC Josephson effects is developed, and current-voltage plots are described as preparation for a treatment of the effect of electromagnetic radiation on Josephson junctions. Quantization of magnetic flux in a superconducting ring leads to the idea of superconducting quantum interference and devices (DC squids) based thereon. Finally, the chapter concludes with a discussion of superconducting materials, with emphasis on the factors determining the magnitude of the transition temperature.

Keywords

Wave Function Magnetic Flux Critical Current Josephson Junction Cooper Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Comments

  1. 1.
    C. Kittel, Introduction to Solid State Physics, Fifth Edition, John Wiley, New York (1976), Chapter 12.Google Scholar
  2. 2.
    N. W. Ashcroft and N. D. Mermin, Solid State Physics, Holt, Rinehart, and Winston, New York (1976), Chapter 34.Google Scholar
  3. 3.
    M. Tinkham, Introduction to Superconductivity, McGraw-Hill, New York (1975), Chapter 1.Google Scholar
  4. 4.
    E. A. Lynton, Superconductivity, Third Edition, Methuen, London (1969).Google Scholar
  5. 5.
    R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, Massachusetts (1975), Volume III, Sections 21-4, 21-5.Google Scholar
  6. 6.
    For an introductory discussion of a microscopic quantum mechanical treatment of the Josephson equations, see J. Clarke, “The Josephson Effect and e/h,” American Journal of Physics, 38, 1071–1095 (1970), Section II.l.ADSCrossRefGoogle Scholar
  7. 7.
    L. I. Schiff, Quantum Mechanics, Third Edition, McGraw-Hill, New York (1968).Google Scholar
  8. 8.
    R. P. Feynman, R. B. Leighton, and M. Sands, Reference 5, Sections 21-3, 21-5.Google Scholar
  9. 9.
    D. Bohm, Quantum Theory, Prentice-Hall, New York (1951), Sections 4.9, 6.6, 6.7, 6.8.Google Scholar
  10. 10.
    J. Clarke, Reference 6, page 1073.Google Scholar
  11. 11.
    C. Kittel, Reference 1, pages 390-392.Google Scholar
  12. 12.
    R. P. Feynman, R. B. Leighton, and M. Sands, Reference 5, Section 21-9.Google Scholar
  13. 13.
    L. Solymar, Superconductive Tunneling and Applications, John Wiley, New York (1972), Chapters 8-10.Google Scholar
  14. 14.
    L. I. Schiff, Reference 7, pages 101-105.Google Scholar
  15. 15.
    B. D. Josephson, “Superconductive Tunneling,” in Superconductivity in Science and Technology, M. H. Cohen (editor), University of Chicago Press, Chicago (1968), page 20.Google Scholar
  16. 16.
    J. Clarke, private communication.Google Scholar
  17. 17.
    See, for example, M. Tinkham, Reference 3, page 194.Google Scholar
  18. 18.
    J. Clarke, “Josephson Junction Detectors,” Science, 184, 1235–1242 (1974).ADSCrossRefGoogle Scholar
  19. 19.
    J. Clarke, “Electronics with Superconducting Junctions,” Physics Today, 24, 30–37 (August 1971).CrossRefGoogle Scholar
  20. 20.
    M. Tinkham, Reference 3, pages 204-205.Google Scholar
  21. 21.
    J. Clarke, Reference 19, page 31.Google Scholar
  22. 22.
    L. Solymar, Reference 13, page 153; M. Tinkham, Reference 3, pages 195-196.Google Scholar
  23. 23.
    M. Tinkham, Reference 3, pages 194-195.Google Scholar
  24. 24.
    J. Clarke, Reference 6, Section II.2.Google Scholar
  25. 25.
    C. Kittel, Reference 1, pages 388-390.Google Scholar
  26. 26.
    L. Solymar, Reference 13, Chapter 11.Google Scholar
  27. 27.
    L. Solymar, Reference 13, Chapters 8, 15.Google Scholar
  28. 28.
    P. L. Richards, “The Josephson Junction as a Detector of Microwave and Far Infrared Radiation,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1977), Volume 12, Chapter 6.Google Scholar
  29. 29.
    J. Clarke, Reference 6, II.3, pages 1078-1080.Google Scholar
  30. 30.
    J. E. Mercereau, “Superconductivity,” in Topics in Solid State and Quantum Electronics, W. D. Hershberger (editor), John Wiley, New York (1972), Chapter 5, pages 235–236.Google Scholar
  31. 31.
    L. Solymar, Reference 13, pages 157-164.Google Scholar
  32. 32.
    L. Solymar, Reference 13, Chapter 17, pages 271-275.Google Scholar
  33. 33.
    See, for example, F. B. Hildebrand, Advanced Calculus for Applications, Prentice-Hall, New York (1962), pages 226–231.Google Scholar
  34. 34.
    P. L. Richards, Reference 29, page 398.Google Scholar
  35. 35.
    L. Solymar, Reference 13, pages 159-160.Google Scholar
  36. 36.
    J. Clarke, Reference 6, Figure 5.Google Scholar
  37. 37.
    See, For example, E. Butkov, Mathematical Physics, Addison-Wesley, Reading, Massachusetts (1968), Figure 9.2, page 364MATHGoogle Scholar
  38. E. Jahnke and F. Emde, Tables of Functions, Dover, New York (1943), pages 156–157.Google Scholar
  39. 38.
    F. B. Hildebrand, Reference 33, page 144, equation (70).Google Scholar
  40. 39.
    A. H. Silver and J. E. Zimmerman, “Josephson Weak Link Devices,” in Applied Superconductivity, V. L. Newhouse (editor), Academic Press, New York (1975), Volume 1, Chapter 1, pages 89–96.Google Scholar
  41. 40.
    See, for example, C. Kittel, Reference 1, pages 380-382.Google Scholar
  42. 41.
    See, for example, C. Kittel, Introduction of Solid State Physics, Fourth Edition, John Wiley, New York (1971), Advanced Topic I, pages 727–729.Google Scholar
  43. 42.
    J. D. Jackson, Classical Electrodynamics, Second Edition, John Wiley, New York (1975), page 815, equation (A.8).MATHGoogle Scholar
  44. 43.
    C. Kittel, Reference 1, page 393.Google Scholar
  45. 44.
    J. E. Mercereau, “Macroscopic Quantum Phenomena,” in Superconductivity, R. D. Parks (editor), Marcel Dekker, New York (1969), Volume 1, Chapter 8.Google Scholar
  46. 45.
    R. C. Jaklevic, J. Lambe, J. E. Mercereau, and A. H. Silver, “Macroscopic Quantum Interference in Superconductors,” Physical Review, 140, A1628–A1637 (1965).ADSCrossRefGoogle Scholar
  47. 46.
    J. E. Mercereau, Reference 44, page 406; R. C. Jaklevic et al., Reference 45, page A1630.Google Scholar
  48. 47.
    L. Solymar, Reference 13, page 201, equation (13.6).Google Scholar
  49. 48.
    R. C. Jaklevic et al., Reference 45, page A1631.Google Scholar
  50. 49.
    J. Clarke, “Low Frequency Applications of Superconducting Quantum Interference Devices,” Proceedings IEEE, 61, 8–19 (1973), Section III.CrossRefGoogle Scholar
  51. 50.
    J. Clarke, Reference 49, Section IV.Google Scholar
  52. 51.
    L. Solymar, Reference 13, Chapter 18.Google Scholar
  53. 52.(a)
    J. Clarke, “The Application of Josephson Junctions to Computer Storage and Logic Elements and to Magnetic Measurements,” in Magnetism and Magnetic Materials—1975, J. J. Becker, G. H. Lander, and J. J. Rhyne (editors), Conference Proceedings No. 29, American Institute of Physics, New York (1975), pages 20–21Google Scholar
  54. (b).
    W. Anacker, “Computing at 4K,” IEEE Spectrum, 16, 26 (May 1979).Google Scholar
  55. 53.
    J. Clarke, “Superconducting Quantum Interference Devices for Low Frequency Measurements,” in Superconductor Applications: Squids and Machines (1977), B. B. Schwartz and S. Foner (editors), Plenum Publishing, New York (1978), Chapter 3, pages 67–124.Google Scholar
  56. 54.
    L. Solymar, Reference 13, Chapters 14, 16, 19.Google Scholar
  57. 55.
    A. H. Silver and J. E. Zimmerman, Reference 39, pages 67-89; 96-106.Google Scholar
  58. 56.
    Future Trends in Superconductive Electronics (Chariottesville, 1978), B. S. Deaver, Jr., C. M. Falco, J. H. Harris, and S. A. Wolf (editors), Conference Proceedings No. 44, American Institute of Physics, New York (1978).Google Scholar
  59. 57.
    C. Kittel, Reference 1, pages 378-379.Google Scholar
  60. 58.
    N. W. Ashcroft and N. D. Mermin, Reference 2, pages 739-746.Google Scholar
  61. 59.
    M. Tinkham, Reference 3, Chapter 2.Google Scholar
  62. 60.
    See, for example, C. Kittel, Reference 1, page 363, Figure 6.Google Scholar
  63. 61.
    T. H. Geballe and M. R. Beasley, “Superconducting Materials for Energy-Related Applications,” in Materials Science in Energy Technology, G. G. Libowitz and M. S. Wittingham (editors), Academic Press, New York (1979), page 522.Google Scholar
  64. 62.
    A. L. Robinson, “Superconductivity: Surpassing the Hydrogen Barrier,” Science, 183, 293–296 (January 25, 1974).ADSCrossRefGoogle Scholar
  65. 63.
    N. W. Ashcroft and N. D. Mermin, Reference 2, page 743; M. Tinkham, Reference 3, pages 17-21.Google Scholar
  66. 64.
    C. Kittel, Quantum Theory of Solids, John Wiley, New York (1963), page 162.Google Scholar
  67. 65.
    R. Meservey and B. B. Schwartz, “Equilibrium Properties: Comparison of Experimental Results with Predictions of BCS Theory,” in Superconductivity, R. D. Parks (editor), Marcel Dekker, New York (1969), Volume 1, pages 117–191.Google Scholar
  68. 66.
    C. Kittel, Reference 1, page 169, equation (32), with an effective mass m* in place of the free electron mass m.Google Scholar
  69. 67.
    Calculated by the author.Google Scholar
  70. 68.
    G. Gladstone, M. A. Jensen, and J. R. Schrieffer, “Superconductivity in the Transition Metals: Theory and Experiment,” in Superconductivity, R. D. Parks (editor), Marcel Dekker, New York (1969), pages 665–816; Table VI, page 734.Google Scholar
  71. 69.
    C. Kittel, Reference 1, pages 164-167.Google Scholar
  72. 70.
    R. M. White and T. H. Geballe, Long Range Order in Solids, Supplement 15 to Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull (editors), Academic Press, New York (1979), page 221.Google Scholar
  73. 71.
    G. Gladstone et al., Reference 68, pages 682-685. See also R. M. White and T. H. Geballe, Reference 70, page 112, equation (3.46).Google Scholar
  74. 72.
    R. M. White and T. H. Geballe, Reference 70, front end papers.Google Scholar
  75. 73.
    G. Gladstone et al., Reference 68, Figure 30, page 736.Google Scholar
  76. 74.
    B. T. Matthias, “Superconductivity in the Periodic System,” in Progress in Low Temperature Physics, C. J. Gorter (editor), North-Holland, Amsterdam (1957), Volume II, pages 138–150; Figure 2, page 140.CrossRefGoogle Scholar
  77. 75.
    B. T. Matthias, “The Empirical Approach to Superconductivity,” in Applied Solid State Physics, W. Low and M. Schieber (editors), Plenum Press, New York (1970), pages 179–188; Figure 2, page 184.CrossRefGoogle Scholar
  78. 76.
    D. Dew-Hughes, “Practical Superconducting Materials,” in Superconducting Machines and Devices, S. Foner and B. B. Schwartz (editors), Plenum Press, New York (1974), Chapter 2, pages 91–92.Google Scholar
  79. 77.
    R. M. White and T. H. Geballe, Reference 70, pages 220-246.Google Scholar
  80. 78.
    R. M. White and T. H. Geballe, Reference 70, page 221.Google Scholar
  81. 79.
    T. H. Geballe and M. R. Beasley, “Superconducting Materials for Energy-Related Applications,” in Materials Science in Energy Technology, G. G. Libowitz and M. S. Wittingham (editors), Academic Press, New York (1979), Chapter 10; pages 520–533.Google Scholar
  82. 80.
    R. M. White and T. H. Geballe, Reference 70, pages 104-113.Google Scholar
  83. 81.
    R. M. White and T. H. Geballe, Reference 70, pages 92-103.Google Scholar
  84. 82.
    D. J. Scalapino, “The Electron-Phonon Interaction and Strong Coupling Superconductors,” in Superconductivity, R. D. Parks (editor), Marcel Dekker, New York (1969), Volume 1, pages 449–560; equation (135).Google Scholar
  85. 83.
    R. M. White and T. H. Geballe, Reference 70, page 228.Google Scholar
  86. 84.
    R. M. White and T. H. Geballe, Reference 70, pages 112, 226, and 228.Google Scholar
  87. 85.
    R. M. White and T. H. Geballe, Reference 70, pages 93-98.Google Scholar
  88. 86.
    T. H. Geballe and M. R. Beasley, Reference 79, pages 534-537.Google Scholar
  89. 87.
    R. M. White and T. H. Geballe, Reference 70, pages 220-246.Google Scholar
  90. 88.
    P. B. Allen and R. C. Dynes, “Transition Temperatures of Strong-Coupled Superconductors Reanalyzed,” Physical Review B, 12, 905–922 (1975).ADSCrossRefGoogle Scholar
  91. 89.
    R. M. White and T. H. Geballe, Reference 70, pages 118-121.Google Scholar
  92. 90.
    See, for example, K. M. Ho, M. L. Cohen, and W. E. Pickett, “Maximum Superconducting Transition Temperature in A15 Compounds?,” Physical Review Letters, 41, 815–818 (1978).ADSCrossRefGoogle Scholar

Suggested Reading

  1. C. Kittel, Introduction to Solid State Physics, Fifth Edition, John Wiley, New York (1976). The basic background reference for this chapter is Kind’s Chapter 12, which includes an introduction to the Josephson effects and to superconducting quantum interference.Google Scholar
  2. L. Solymar, Superconductive Tunneling and Applications, John Wiley, New York (1972). A discussion, at the intermediate level, of both the basic ideas and many kinds of applications of the Josephson effects.Google Scholar
  3. R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics, Addison-Wesley, Reading, Massachusetts (1965), Volume III, Chapter 21. A treatment of the macroscopic quantum mechanical description of superconductivity on which our discussion is based. Highly recommended.MATHGoogle Scholar
  4. B. S. Deaver, C. M. Falco, J. H. Harris, and S. A. Wolf, editors, Future Trends in Superconductive Electronics (Charlottsville, 1978), Conference Proceedings No. 44, American Institute of Physics, New York (1978). This collection of papers, both research and review, is suggested for a view of the field as of early 1978.Google Scholar
  5. R. M. White and T. H. Geballe, Long Range Order in Solids, Supplement 15 to Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull (editors), Academic Press, New York (1979). This recent monograph, at the advanced level, offers an excellent discussion of the physics of superconducting materials for the reader already familiar with the BCS theory.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard Dalven
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations