Advertisement

Detectors and Generators of Electromagnetic Radiation

  • Richard Dalven

Abstract

This chapter discusses a number of solid state (mostly semiconductor) detectors and generators of electromagnetic radiation. The absorption of photons by both intrinsic and extrinsic semiconductors is considered first and leads to a discussion of photoconductive and photovoltaic devices. Several important applications of intrinsic photoconductivity (e.g., photography) are treated briefly. Spontaneous photon emission in semiconductors is considered as the basis for p-n junction luminescence in light-emitting diodes. A general discussion of photon amplification by stimulated emission is provided as background for a description of three- and four-level lasers (e.g., ruby). Finally, stimulated emission in semiconductor junction lasers concludes the chapter.

Keywords

Valence Band Wave Vector Population Inversion Band Diagram Indirect Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Comments

  1. 1.
    T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics, John Wiley, New York (1973), Chapter 3.Google Scholar
  2. 2.
    J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, New York (1971), Chapter 3.Google Scholar
  3. 3.
    C. Kittel, Introduction to Solid State Physics, Fifth Edition, John Wiley, New York (1976), pages 209–211.Google Scholar
  4. 4.
    See, for example, J. M. Stone, Radiation and Optics, McGraw-Hill, New York (1963), pages 376–383.Google Scholar
  5. 5.
    T. S. Moss et al, Reference 1, pages 55–69.Google Scholar
  6. 6.
    See, for example, the data on germanium of W. C. Dash and R. Newman, Physical Review, 99, 1151 (1955).ADSCrossRefGoogle Scholar
  7. 7.
    See, T. S. Moss et al., Reference 1, pages 68–69, for examples.Google Scholar
  8. 8.
    T. S. Moss et al, Reference 1, pages 90–94; J. I. Pankove, Reference 2, pages 62–66.Google Scholar
  9. 9.
    See H. M. Rosenberg, Low Temperature Solid State Physics, Oxford University Press, New York (1963), pages 249–252 for examples.Google Scholar
  10. 10.
    For impurity energy levels in germanium and silicon, see P. R. Bratt, “Impurity Germanium and Silicon Infrared Detectors,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1977), Volume 12, pages 44–45.Google Scholar
  11. 11.
    D. Long, Energy Bands in Semiconductors, John Wiley, New York (1968), pages 123–134.Google Scholar
  12. 12.
    D. L. Greenaway and G. Harbeke, Optical Properties and Band Structure of Semiconductors, Pergamon Press, Oxford (1968), pages 88–95.Google Scholar
  13. 13.
    Adapted from D. Long, Reference 11, page 129, Figure 7.8.Google Scholar
  14. 14.
    D. Long, Reference 11, page 197.Google Scholar
  15. 15.
    E. Gutsche, J. Voight, and E. Ost, in Proceedings of the Third International Conference on Photoconductivity, 1969, E. M. Pell (editor), Pergamon Press, Oxford (1971), page 106.Google Scholar
  16. 16.
    H. Levinstein, Physics Today, 30, 23–28 (November 1977).CrossRefGoogle Scholar
  17. 17.
    R. Dalven, in Solid State Physics, F. Seitz, D. Turnbull, and H. Ehrenreich (editors), Academic Press, New York (1973), Volume 28, pages 179–224.Google Scholar
  18. 18.
    I. Melngailis and T. C. Harman, in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1970), Volume 5, pages 111–174.Google Scholar
  19. 19.
    T. C. Harman in The Physics of Semimetals and Narrow-Gap Semiconductors, D. L. Carter and R. T. Bate (editors), Pergamon Press, Oxford (1971), pages 363–382.Google Scholar
  20. 20.
    T. C. Harman and I. Melngailis, in Applied Solid State Science, R. Wolfe (editor), Academic Press, New York (1974), Volume 4, pages 1–94.Google Scholar
  21. 21.
    D. Long and J. L. Schmidt, in Reference 18, pages 175–255.Google Scholar
  22. 22.
    T. S. Moss et al., Reference 1, pages 290–296.Google Scholar
  23. 23.
    A. G. Milnes, Deep Impurities in Semiconductors, John Wiley, New York (1973), pages 175–177.Google Scholar
  24. 23a.
    P. R. Bratt, “Impurity Germanium and Silicon Infrared Detectors,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1977), Volume 12, pages 39–142, especially pages 108–113.Google Scholar
  25. 24.
    R. H. Bube, in Photoconductivity and Related Phenomena, J. Mort and D. M. Pai (editors), Elsevier Scientific Publishing Co., Amsterdam (1976), pages 117–153.Google Scholar
  26. 25.
    C. Kittel, Introduction to Solid State Physics, Fourth Edition, John Wiley, New York (1971), pages 628–632.Google Scholar
  27. 26.
    R. H. Bube, Photoconductivity of Solids, John Wiley, New York (1960), pages 59–60, 74–77.MATHGoogle Scholar
  28. 27.
    T. S. Moss et al., Reference 1, pages 191–192.Google Scholar
  29. 28.
    T. S. Moss et al., Reference 1, pages 168–169.Google Scholar
  30. 29.
    P. W. Kruse, “The Photon Detection Process,” in Optical and Infrared Detectors, R. J. Keyes (editor), Springer-Verlag, New York (1977), pages 42–47.Google Scholar
  31. 30.
    I. Melngailis and T. C. Harman, Applied Physics Letters, 13, 180–183 (1968), Figure 2.ADSCrossRefGoogle Scholar
  32. 31.
    B. G. Streetman, Solid State Electronic Devices, Prentice Hall, New York (1972), pages 232–239.Google Scholar
  33. 32.
    T. S. Moss et al., Reference 1, pages 153–158; J. I. Pankove, Reference 2, pages 302–312.Google Scholar
  34. 33.
    I. Melngailis and T. C. Harman, Reference 18, page 158.Google Scholar
  35. 34.
    H. J. Hovel, “Solar Cells,” in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1975), Volume 11.Google Scholar
  36. 35.
    T. S. Moss et al., Reference 1, pages 192–197.Google Scholar
  37. 36.
    T. S. Moss et al., Reference 1, page 193.Google Scholar
  38. 37.
    J. duBow and L. Curran, Electronics, 49, 86–99 (November 11, 1976)Google Scholar
  39. J. Javetski, Electronics, 52, 105–122 (July 19, 1979).Google Scholar
  40. 38.
    M. D. Tabak, S. W. Ing, and M. E. Scharfe, IEEE Transactions on Electronic Devices, ED-20, 132–139(1970).Google Scholar
  41. 39.
    F. W. Schmidlin, in Reference 24, pages 421–478.Google Scholar
  42. 40.
    R. H. Bube, Reference 26, pages 233–234.Google Scholar
  43. 41.
    W. R. Beam, Electronics of Solids, McGraw-Hill, New York (1965), page 202.Google Scholar
  44. 42.
    B. G. Streetman, Reference 31, pages 244–246.Google Scholar
  45. 43.
    W. R. Beam, Electronics of Solids, McGraw Hill, New York (1965), pages 202–205.Google Scholar
  46. 44.
    C. E. K. Mees and T. H. James, The Theory of the Photographic Process, Third Edition, Macmillan, New York (1966), pages 19–30.Google Scholar
  47. 45.
    See, for example, Color As Seen and Photographed, Second Edition, Eastman Kodak Co., Rochester (1972), pages 30–39.Google Scholar
  48. 46.
    C. E. K. Mees and T. H. James, Reference 44, pages 103–111.Google Scholar
  49. 47.
    C. E. K. Mees and T. H. James, Reference 44, page 278.Google Scholar
  50. 48.
    J. I. Pankove, Reference 2, pages 124–131.Google Scholar
  51. 49.
    T. S. Moss et al., Reference 1, pages 198–200; 202–206.Google Scholar
  52. 50.
    S. Wang, Solid State Electronics, McGraw Hill, New York (1966), page 278.Google Scholar
  53. 51.
    A. Mooradian and H. Y. Fan, Radiative Recombination in Semiconductors (Seventh International Conference on the Physics of Semiconductors, Paris, 1964), Academic Press, New York (1965), pages 39–46.Google Scholar
  54. 52.
    D. Long, Reference 11, page 111.Google Scholar
  55. 53.
    J. I. Pankove, Reference 2, pages 125–126.Google Scholar
  56. 54.
    J. I. Pankove, Reference 2, pages 132–136.Google Scholar
  57. 55.
    T. S. Moss et al., Reference 1, pages 210–216.Google Scholar
  58. 56.
    C. J. Neuse, H. Kressel, I. Ladany, IEEE Spectrum, 9, 28–38 (May 1972).CrossRefGoogle Scholar
  59. 57.
    B. G. Streetman, Reference 31, pages 239–244.Google Scholar
  60. 58.
    W. V. Smith, in Topics in Solid State and Quantum Electronics, W. D. Hershberger (editor), John Wiley, New York (1972), pages 264–269.Google Scholar
  61. 59.
    T. S. Moss et al., Reference 1, pages 224–228.Google Scholar
  62. 60.
    J. I. Pankove, Reference 2, pages 177–193.Google Scholar
  63. 61.
    P. J. Dean, in Applied Solid State Science, R. Wolfe (editor), Academic Press, New York (1969), Volume 1, pages 24–29.Google Scholar
  64. 62.
    C. B. Duke and N. Holonyak, Jr., Physics Today, 26, 23–31 (December 1973).ADSCrossRefGoogle Scholar
  65. 63.
    L. I. Schiff, Quantum Mechanics, Third Edition, McGraw-Hill, New York (1968), pages 403–404.Google Scholar
  66. 64.
    W. Koechner, Solid State Laser Engineering, Springer-Verlag, New York (1976), Chapter 1.Google Scholar
  67. 65.
    W. V. Smith, Reference 58, pages 241–249.Google Scholar
  68. 66.
    C. Kittel, Reference 3, pages 525–527.Google Scholar
  69. 67.
    W. V. Smith and P. P. Sorokin, The Laser, McGraw-Hill, New York (1966), pages 5–7.Google Scholar
  70. 68.
    L. I. Schiff, Reference 63, pages 404–405 and 414.Google Scholar
  71. 69.
    See, for example, H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley, New York (1944), pages 113–114.Google Scholar
  72. 70.
    W. Koechner, Reference 64, page 46; C. Kittel, Reference 3, pages 528–529.Google Scholar
  73. 71.
    W. Koechner, Reference 64, page 2.Google Scholar
  74. 72.
    W. Koechner, Reference 64, Chapter 2; W. V. Smith, Reference 58, Table 1, pages 254–255.Google Scholar
  75. 73.
    W. V. Smith, Reference 58, pages 249–253.Google Scholar
  76. 74.
    A. Yariv, Quantum Electronics, Second Edition, John Wiley, New York (1975), pages 219–238.Google Scholar
  77. 75.
    W. V. Smith, Reference 58, pages 269–274.Google Scholar
  78. 76.
    B. G. Streetman, Reference 31, pages 262–272.Google Scholar
  79. 77.
    W. V. Smith, Reference 58, page 270.Google Scholar
  80. 78.
    See, for example, B. Lax, Science, 141, 1247–1255 (1963).ADSCrossRefGoogle Scholar
  81. 79.
    A. Yariv, Reference 74, pages 230–231.Google Scholar
  82. 80.
    A. Yariv, Reference 74, page 237, gives a table of examples.Google Scholar
  83. 81.
    W. V. Smith, Reference 58, page 267.Google Scholar
  84. 82.
    T. C. Harman and I. Melngailis, in Applied Solid State Science, R. Wolfe (editor), Academic Press, New York (1974), Volume 4, pages 1–94, Section 13.Google Scholar
  85. 83.
    T. S. Moss et al., Reference 1, pages 241-242.Google Scholar
  86. 84.
    M. B. Panish and I. Hayashi, in Applied Solid State Science, R. Wolfe (editor), Academic Press, New York (1974), Volume 4, pages 235–328.Google Scholar

Suggested Reading

  1. T. S. Moss, G. J. Burrell, and B. Ellis, Semiconductor Opto-Electronics, John Wiley, New York (1973). A good book on the physics of the interaction of radiation with semiconductors, covering both basic and applied topics.Google Scholar
  2. J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, New York (1971). This book is more of a research monograph than the book above, but covers many of the same topics.Google Scholar
  3. W. Koechner, Solid State Laser Engineering, Springer-Verlag, New York (1976). Chapter 1 of this monograph offers a brief introduction to optical amplification for the non-specialist, while Chapter 2 describes solid state laser materials (excluding semiconductors) in some detail.Google Scholar
  4. W. V. Smith, in Topics in Solid State and Quantum Electronics, W. D. Hershberger (editor), John Wiley, New York (1972). This collection of articles contains a chapter by Smith discussing both optically pumped solid state lasers and semiconductor injection lasers.Google Scholar
  5. A. Yariv, Quantum Electronics, Second Edition, John Wiley, New York (1975). Chapters 9 and 10 of this advanced textbook discuss many aspects of laser physics, including non-solid-state lasers.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard Dalven
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations