Advertisement

Other Semiconductor Devices

  • Richard Dalven

Abstract

In this chapter, we discuss some additional topics on semiconductor physics and their applications. After a brief introduction to surface states on semiconductors, some aspects of the band structure at the surface are considered. These concepts are then applied to discussions of metal-semiconductor contacts and photoemission from semiconductors, including the idea of devices with a negative electron affinity. The next topic is the physics of the transferred electron, or Gunn, effect, discussed in terms of band structure using GaAs as the example. One mode (domain formation) of exploitation of the Gunn effect in producing microwave electrical oscillations is considered. Finally, some aspects of the electronic structure of amorphous semiconductors are introduced as the basis for a brief discussion of memory and switching devices.

Keywords

Space Charge Space Charge Region Band Diagram Conduction Band Edge Amorphous Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Comments

  1. 1.
    See, for example, C. Kittel, Introduction to Solid State Physics, Fifth Edition, John Wiley, New York (1976), pages 191–192.Google Scholar
  2. 2.
    J. P. McKelvey, Solid State and Semiconductor Physics, Harper and Row, New York (1966), pages 485–489.Google Scholar
  3. 3.
    A. S. Grove, Physics and Technology of Semiconductor Devices, John Wiley, New York (1967), pages 144–145, 282-285, 334–337.Google Scholar
  4. 4.
    A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, North-Holland, Amsterdam (1965), Chapters 5 and 9.Google Scholar
  5. 5.
    S. Wang, Solid State Electronics, McGraw-Hill, New York (1966), pages 294–300.Google Scholar
  6. 6.
    J. Van Laar and J. J. Scheer, “Photoemission of Semiconductors,” Philips Technical Review, 29, 54–66 (1968), especially pages 56–58.Google Scholar
  7. 7.
    A. Many et al., Reference 4, pages 166–174.Google Scholar
  8. 8.
    A. Many et al., Reference 4, page 348.Google Scholar
  9. 9.
    A. Many et al, Reference 4, pages 357–358.Google Scholar
  10. 10.
    For a review, see S. G. Davison and J. D. Levine, in Solid State Physics, H. Ehrenreich, F. Seitz, and D. Turnbull (editors), Academic Press, New York (1970), Volume 25, pages 1–149, especially pages 88–148.Google Scholar
  11. 11.
    H. K. Henisch, Rectifying Semiconductor Contacts, Oxford University Press (1957), pages 173–179.Google Scholar
  12. 12.
    J. Van Laar and J. J. Scheer, Reference 6, pages 56–57.Google Scholar
  13. 13.
    R. L. Bell, Negative Electron Affinity Devices, Oxford University Press (1973), pages 17–19.Google Scholar
  14. 14.
    S. G. Davison and J. D. Levine, Reference 10, page 135, gives information on Fermi level pinning in a number of semiconductors.Google Scholar
  15. 15.
    A. S. Grove, Reference 3, pages 267–268, Figure 9.4.Google Scholar
  16. 16.
    See S. M. Sze, Physics of Semiconductor Devices, John Wiley, New York (1969), pages 397–399, Table 8.4, which gives measured barrier heights for a number of metal-semiconductor contacts.Google Scholar
  17. 17.
    J. Bardeen, “Surface States and Rectification at a Metal-Semiconductor Contact,” Physical Review, 71, 717–727 (1947).ADSCrossRefGoogle Scholar
  18. 18.
    A. M. Cowley and S. M. Sze, “Surface States and Barrier Height of Metal-Semiconductor Systems,” Journal of Applied Physics, 36, 3212–3220 (1965).ADSCrossRefGoogle Scholar
  19. 19.
    R. S. Muller and T. I. Kamins, Device Electronics for Integrated Circuits, John Wiley, New York (1977), pages 93–95.Google Scholar
  20. 20.
    A. Van der Ziel, Solid State Physical Electronics, Second Edition, Prentice-Hall, New York (1968), page 101.Google Scholar
  21. 21.
    J. I. Pankove, Optical Processes in Semiconductors, Prentice-Hall, New York (1971), Chapter 13.Google Scholar
  22. 22.
    R. U. Martinelli and D. G. Fisher, “The Application of Semiconductors with Negative Electron Affinity Surfaces to Electron Emission Devices,” Proceedings IEEE, 62, 1339–1360(1974), page 1342.ADSCrossRefGoogle Scholar
  23. 23.
    R. L. Bell, Reference 13, Section 6.4, page 74.Google Scholar
  24. 24.
    J. I. Pankove, Reference 21, Table 13–2, page 298.Google Scholar
  25. 25.
    R. U. Martinelli and D. G. Fisher, Reference 22, Table 1, page 1340.Google Scholar
  26. 26.
    R. L. Bell, Reference 13, Chapter 6.Google Scholar
  27. 27.
    J. I. Pankove, Reference 21, page 296.Google Scholar
  28. 28.
    J. I. Pankove, Reference 21, Figure 13–11 (b), page 297.Google Scholar
  29. 29.
    R. U. Martinelli and D. G. Fisher, Reference 22, pages 1345–1352.Google Scholar
  30. 30.
    R. E. Simon, “A Solid State Boost for Electron Emission Devices,” IEEE Spectrum, 9, 74–78 (December 1972).CrossRefGoogle Scholar
  31. 31.
    A. Van der Ziel, Reference 20, Chapter 10.Google Scholar
  32. 32.
    R. U. Martinelli and D. G. Fisher, Reference 22, pages 1352–1356.Google Scholar
  33. 33.
    R. U. Martinelli and D. G. Fisher, Reference 22, pages 1356–1357.Google Scholar
  34. 34.
    R. L. Bell, Reference 13, Chapter 8, pages 96–102.Google Scholar
  35. 35.
    A. van der Ziel, Reference 20, pages 157–162.Google Scholar
  36. 36.
    J. G. Ruch and G. S. Kino, “Transport Properties of GaAs,” Physical Review, 174, 921–931 (1968), Figure 5, page 926.ADSCrossRefGoogle Scholar
  37. 37.
    D. E. Aspnes, “Lower Conduction Band Structure of GaAs,” in Gallium Arsenide and Related Compounds (St. Louis), 1976, L. F. Eastman (editor), Proceedings of the Sixth International Symposium, Conference Series Number 33b, The Institute of Physics, London (1977), pages 110–119.Google Scholar
  38. 38.
    The room-temperature energy separations shown in Figure 6.23 were calculated by the author from results given in Reference 37, Table 1.Google Scholar
  39. 39.
    D. E. Aspnes, Reference 37, Table 2, page 116.Google Scholar
  40. 40.
    C. Kittel, Introduction to Solid State Physics, Fifth Edition, John Wiley, New York (1976), page 162.Google Scholar
  41. 41.
    M. E. Jones and R. T. Bate, “Electronic and Optical Phenomena in Semiconductors,” Annual Review of Materials Science, 1, 347–372, (1971), pages 351–356.ADSCrossRefGoogle Scholar
  42. 42.
    J. A. Copeland and S. Knight, in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer (editors), Academic Press, New York (1971), Volume 7, Part A, pages 3–72.Google Scholar
  43. 43.
    See, for example, B. G. Streetman, Solid State Electronic Devices, Prentice Hall, New York (1972), pages 429–433, for a summary.Google Scholar
  44. 44.
    H. Kroemer, “Negative Conductance in Semiconductors,” IEEE Spectrum, 5, 47–56 (January 1968).CrossRefGoogle Scholar
  45. 45.
    H. Kroemer, “The Gunn Effect—Bulk Instabilities,” in Topics in Solid State and Quantum Electronics, W. D. Hershberger (editor), John Wiley, New York (1972), pages 20–98.Google Scholar
  46. 46.
    S. Wang, Reference 5, pages 274–275.Google Scholar
  47. 47.
    For examples, see H. Kroemer, Reference 45, page 21; J. A. Copeland and S. Knight, Reference 42, page 33.Google Scholar
  48. 48.
    H. Kroemer, Reference 44, page 53.Google Scholar
  49. 49.
    N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, Oxford University Press, New York (1971); Second Edition (1978).Google Scholar
  50. 50.
    M. H. Cohen, “Theory of Amorphous Semiconductors,” Physics Today, 24, 26–32 (May 1971).CrossRefGoogle Scholar
  51. 51.
    E. N. Economou, M. H. Cohen, K. F. Freed, and E. S. Kirkpatrick, “Electronic Structure of Disordered Materials,” in Amorphous and Liquid Semiconductors, J. Taue (editor), Plenum Press, New York (1974), pages 101–158.CrossRefGoogle Scholar
  52. 52.
    J. Taue, “Amorphous Semiconductors,” Physics Today, 29, 23–31 (October 1976).Google Scholar
  53. 53.
    E. N. Economou et al., Reference 51, pages 106–108.Google Scholar
  54. 54.
    E. N. Economou et al., Reference 51, page 108.Google Scholar
  55. 55.
    M. H. Cohen, Reference 50, page 26.Google Scholar
  56. 56.
    J. Taue, Reference 52, page 24.Google Scholar
  57. 57.
    H. Fritzsche, “Electronic Properties of Amorphous Semiconductors,” in Amorphous and Liquid Semiconductors, J. Taue (Editor), Plenum Press, New York (1974), pages 221–312; page 229.CrossRefGoogle Scholar
  58. 58.
    H. Fritzsche, Reference 57, pages 258–262.Google Scholar
  59. 59.
    H. Fritzsche, Reference 57, pages 235–236.Google Scholar
  60. 60.
    D. Adler, “Amorphous Semiconductor Devices,” Scientific American, 236, 36–48 (May 1977).ADSCrossRefGoogle Scholar
  61. 61.
    H. Fritzsche, “Switching and Memory in Amorphous Semiconductors,” in Amorphous and Liquid Semiconductors, J. Taue (editor), Plenum Press, New York (1974), pages 313–359.CrossRefGoogle Scholar
  62. 62.
    G. Lapidus, “Amorphous Devices: At the Threshold,” IEEE Spectrum, 10, 44–52 (January 1973).CrossRefGoogle Scholar
  63. 63.
    R. Allan, “Amorphous Semiconductors Revisited,” IEEE Spectrum, 14, 41–45 (May 1977).Google Scholar
  64. 64.
    H. Fritzsche, Reference 61, page 348.Google Scholar
  65. 65.
    D. Adler, Reference 60, pages 45–46.Google Scholar
  66. 66.
    H. Ehrenreich et al., Fundamentals of Amorphous Semiconductors, National Academy of Sciences, Washington, D.C. (1972), Chapter 6.Google Scholar
  67. 67.
    D. Adler, H. K. Henisch, and N. Mott, “The Mechanism of Threshold Switching in Amorphous Alloys,” Reviews of Modern Physics, 50, 209–220 (1978).ADSCrossRefGoogle Scholar
  68. 68.
    D. Adler, Reference 60, page 44.Google Scholar

Suggested Reading

  1. A. Many, Y. Goldstein, and N. B. Grover, Semiconductor Surfaces, North-Holland, Amsterdam (1965). This treatise discusses its subject at the advanced level. Chapters 5, on surface states, and 9, on the electronic structure of the surface, are particularly pertinent to our device-related discussion.Google Scholar
  2. J. van Laar and J. J. Scheer, “Photoemission of Semiconductors,” Philips Technical Review, 29, 54–66 (1968). This introductory article discusses photoemission and surface effects, including negative electron affinity, in semiconductors.Google Scholar
  3. H. Kroemer, “Negative Conductance in Semiconductors,” IEEE Spectrum, 5, 47–56 (January 1968). A good tutorial review article which stresses basic physics. Some of the details of the GaAs band structure are now superseded by new data, but the application to the Gunn effect is well presented.CrossRefGoogle Scholar
  4. J. Tauc (editor), Amorphous and Liquid Semiconductors, Plenum Press, New York (1974). A set of articles by several authors discussing, at the advanced level, the physics and applications of amorphous semiconductors.Google Scholar
  5. D. Adler, “Amorphous Semiconductor Devices,” Scientific American, 236, 36–48 (May 1977). An article which emphasizes the physics of amorphous semiconductors and devices.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Richard Dalven
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations