Skip to main content

Abstract

In a photographic camera, the camera lens forms an image of the object and the image is detected by the photographic film. In the Anger camera described in Chapter 4, the pinhole aperture or the multihole collimator performs the imaging operation while a detector system consisting of a scintillation crystal and an arrangement of photomultiplier tubes detects the image. The detector system in the Anger camera is very efficient and records almost every X-ray or γ-ray photon that arrives with an energy within the preselected energy window. Unfortunately, the imaging system severely limits the number of photons that arrive. A collimator typically passes only 0.01% of the radiation emitted by the object. Since the statistical quality of the images formed in this way is dependent on the number of photons collected from a single element of the object, one needs to collect as many photons as possible. Patient-dose restrictions limit the number of photons available, while exposure time is limited by temporal-resolution requirements in a dynamic study, by image degradation due to patient motion, by patient fatigue, or by the expense involved in tying up a clinical instrument for extended periods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abels, J.G. (1968), Fourier transform photography: A new method for X-ray astronomy, Proc. Astron. Soc. Austr. 1: 1:72.

    Google Scholar 

  • Akcasu, A.Z., May, R.S., Knoll, G.F., Rogers, W.L., Koral, K.F., Jones, L.W. (1974), Coded aperture gamma ray imaging with stochastic apertures, Opt. Eng. 13: 117.

    Article  Google Scholar 

  • Barrett, H.H. (1972a), Pulse compression techniques in nuclear medicine, Proc. 60: 723.

    Article  Google Scholar 

  • Barrett, H.H. (1972b), Fresnel zone plate imaging in nuclear medicine, J. Nucl. Med. 13: 382.

    PubMed  CAS  Google Scholar 

  • Barrett, H.H., DeMeester, G.D. (1974), Quantum noise in fresnel zone plate imaging, Appl. Opt. 13: 1100.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, H. H., Horrigan, F. A. (1973), Fresnel zone plate imaging of gamma rays; Theory, Appl. Opt. 12: 2686.

    Article  PubMed  CAS  Google Scholar 

  • Barrett, H.H., Swindell, W. (1977), Analog reconstruction methods for transaxial tomography, Proc. IEEE 65: 89.

    Article  Google Scholar 

  • Barrett, H.H., Wilson, D.T., DeMeester, G.D. (1972), The use of half-tone screens in Fresnel zone plate imaging of incoherent sources, Opt. Commun. 5: 398.

    Article  Google Scholar 

  • Barrett, H.H., DeMeester, G.D.,Wilson, D.T., Farmelant, M.H. (1973a), Recent advances in Fresnel zone plate imaging, in Medical Radioisotope Scintigraphy 1972, Vol. I, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Barrett, H.H., Wilson, D.T., DeMeester, G.H., Sharfman, H. (1973b), Fresnel zone plate imaging in radiology and nuclear medicine, Opt. Eng. 12: 8.

    Google Scholar 

  • Barrett, H.H., Stoner, W.W., Wilson, D.T., DeMeester, G.D. (1974), Coded apertures derived from the Fresnel zone plate, Opt. Eng. 13: 539.

    Article  Google Scholar 

  • Born, M., Wolf, E. (1975), Principles of Optics, Pergamon Press, New York.

    Google Scholar 

  • Bracewell, R. (1965), The Fourier transform and its applications, McGraw-Hill, New York.

    Google Scholar 

  • Brown, C.M. (1972), Multiplex imaging and random arrays, Ph.D. dissertation, University of Chicago.

    Google Scholar 

  • Brown, C.M. (1974), Multiplex imaging with multiple-pinhole cameras, J. Appl. Phys. 45: 4.

    Google Scholar 

  • Budinger, T.F., Macdonald, B. (1975), Reconstruction of Fresnel coded gamma camera images by digital computer, J. Nucl. Med. 16: 309.

    PubMed  CAS  Google Scholar 

  • Burckhardt, C.B., Doherty, E.T. (1968), Formation of carrier frequency holograms with an on-axis reference beam, Appl. Opt. 7: 1191.

    Article  PubMed  CAS  Google Scholar 

  • Calabro, D., Wolf, J.K. (1968), On the synthesis of two-dimensional arrays with desirable correlation properties, Inf. Control 11: 537.

    Article  Google Scholar 

  • Chang, L.T. (1976), Radionuclide imaging with coded apertures and three-dimensional image reconstruction from focal-plane tomography, Ph.D. thesis, University of California Berkeley.

    Google Scholar 

  • Chang, L.T., Kaplan, S.N., Macdonald, B., Perez-Mendez, V., Shiraishi, L. (1974), A method of tomographic imaging using a multiple pinhole-coded aperture, J. Nucl. Med. 15: 1063.

    PubMed  CAS  Google Scholar 

  • Dance, D.R., Wilson, B.C., Parker, R.P. (1975), Digital reconstruction of point sources imaged by a zone plate camera, Phys. Med. Biol. 20: 747.

    Article  PubMed  CAS  Google Scholar 

  • Davenport, W.B., Jr., Root, W.L. (1958), An introduction to the theory of random signals and noise, McGraw-Hill, New York.

    Google Scholar 

  • Dicke, R.H. (1968), Scatter-hole cameras for X-rays and gamma rays, Astrophys. J. 153: L101.

    Article  Google Scholar 

  • Dowdy, J.E., Tipton, M.D., Murry, R.C., Stokely, E.M. (1977), Coded apertures for nuclear medicine imaging, Appl. Radiol. 6(4): 145 (July-Aug.)

    Google Scholar 

  • Farmelant, M.H., DeMeester, G.D., Wilson, D., Barrett, H. (1975), Initial clinical experiences with a Fresnel zone plate imager, J. Nucl. Med. 16: 183.

    PubMed  CAS  Google Scholar 

  • Fenimore, E. E., Cannon, T. M. (1978), Coded aperture imaging with uniformly redundant arrays, Appl. Opt. 17: 337.

    Article  PubMed  CAS  Google Scholar 

  • Gaskill, J.D. (1978), Linear Systems, Fourier Transforms, and Optics, Wiley, New York.

    Google Scholar 

  • Gaskill, J.D., Whitehead, F.R., Gray, J.E., O’Mara, R.E. (1972), Matched filter resto-ration of coded gamma and X-ray imagery, Proceedings of the SPIE, Vol. 35, November 29–30, Chicago,1972, SPIE, Redondo Beach, Cal., p. 193.

    Google Scholar 

  • Girard, A. (1963), Spectrometre a Grilles, Appl. Opt. 2: 79.

    Article  Google Scholar 

  • Golay, M.J.E. (1949), Multislit spectrometry, J. Opt. Soc. Am. 39: 437.

    Article  PubMed  CAS  Google Scholar 

  • Golay, M.J.E. (1951), Static multislit spectrometry and its application to the panoramic display of infrared spectra, J. Opt. Soc. Am. 41: 468.

    Article  PubMed  CAS  Google Scholar 

  • Golay, M.J.E. (1971), Point arrays having compact, nonredundant autocorrelations, J. Opt. Soc. Am. 61: 272.

    Article  Google Scholar 

  • Gottlieb, P. (1968), A television scanning scheme for a detector-noise-limited system, IEEE Trans. Inf. Theory IT 14: 428.

    Article  Google Scholar 

  • Groh, G., Hayat, G.S., Stroke, G.W. (1972), X-ray and gamma-ray imaging with multiple-pinhole cameras using a posteriori image synthesis, Appl. Opt. 11: 931.

    Article  PubMed  CAS  Google Scholar 

  • Guha, D.K. (1976), Imaging by shadow casting, Ph.D. dissertation, University of Rhode Island.

    Google Scholar 

  • Harwitt, M. (1971), Spectrometric imager, Appl. Opt. 10: 1415.

    Article  Google Scholar 

  • Hayat, G.S. (1971), X-Ray and y-ray imaging with multiple-pinhole cameras, Ph.D. thesis, SUNY Stony Brook, New York.

    Google Scholar 

  • Jaszczak, R.J., Moore, F.E., Whitehead, F.R. (1974), Use of an array of three off-axis zone plates for large field of view gamma-ray imaging, in Proceedings of the SPIE Seminar on Application of Optical Instrumentation in Medicine II, Chicago, 1974.

    Google Scholar 

  • Klauder, J R., Price, A C., Darlingtin, D., Ablersheim, W.J. (1960), The theory and design of chirp radars, Bell Syst. Tech. J. 39: 745.

    Google Scholar 

  • Koral, K.F., Rogers, W.L., Knoll, G.F. (1975), Digital tomographic imaging with a time-modulated pseudorandom coded aperture and an Anger camera, J. Nucl. Med. 16: 402.

    PubMed  CAS  Google Scholar 

  • Koral, K.F., Knoll, G.F., Rogers, W.L. (1977), Emission tomography with time-coded apertures, in A Review of Information Processing in Medical Imaging, Proceedings of the Fifth International Conference, Nashville, Tennessee, Vanderbilt University, 1977 (A.B. Brill, P.R. Price, W.J. McClain, M.W. Lindsay, eds.), pp. 252–265.

    Google Scholar 

  • Koral, K.F., Freitas, J.E., Rogers, W.L., Keyes, J. W.,Jr. (1979), Thyroid scintigraphy with time-coded aperture, J. Nucl. Med. 20: 345–349.

    PubMed  CAS  Google Scholar 

  • Lindner, J. (1975), Binary sequences up to length 40 with best possible autocorrelation function, Electron. Lett. 11: 507.

    Article  Google Scholar 

  • Macdonald, B., Chang, L.T., Perez-Mendez, V., Shiraishi, L. (1974), Gamma-ray imaging using a Fresnel zone plate aperture, multiwire proportional chamber detector, and computer reconstruction, IEEE Trans. Nucl. Sci. 21: 672.

    Article  Google Scholar 

  • Macdonald, B.’ Chang, L.T., Perez-Mendez, V. (1975), Three dimensional image re-construction using pinhole arrays, in International Optical Computing Conference, Washington, D.C., April 23–25, 1975.

    Google Scholar 

  • Macovski, A. (1974), Gamma-ray imaging system using modulated apertures, Phys. Med. Biol. 19: 523.

    Article  PubMed  CAS  Google Scholar 

  • MacWilliams, F.J., Sloane, N.J.A. (1976), Pseudo-random sequences and arrays, Proc. IEEE 64: 1715.

    Article  Google Scholar 

  • May, R.S. (1974), Stochastic aperture techniques in gamma-ray image formation, Ph.D. thesis, University of Michigan.

    Google Scholar 

  • May, R.S., Akcasu, Z., Knoll, G.F. (1974), Gamma ray imaging with stochastic apertures, Appl. Opt. 13: 2589.

    Article  PubMed  CAS  Google Scholar 

  • Mertz, L. (1965), Transformations in Optics, Wiley, New York.

    Google Scholar 

  • Mertz, L., Young, N.O. (1961), Fresnel transformation of images, in Proceedings of the International Conference on Optical Instruments, Chapman and Hall, London, p. 305.

    Google Scholar 

  • Metz, C.E. (1969), A mathematical investigation of radioisotope scan image processing, Ph. D. dissertation, University of Pennsylvania.

    Google Scholar 

  • Metz, C.E., Beck, R.N, (1974), Quantitative effects of stationary linear image processing on noise and resolution of structure in radionuclide images, J. Nucl. Med. 15: 164.

    PubMed  CAS  Google Scholar 

  • Miller, E. (1976), Aperture coding with a rotating slit, in Program of the Optical Society of America Annual Meeting, Tucson, Arizona, October 1976, American Institute of Physics, New York.

    Google Scholar 

  • Moffat, A.T. (1968), Minimum-redundancy linear arrays, IEEE Trans. Antennas Propag. AP-16: 172

    Google Scholar 

  • Papoulis, A. (1962), The Fourier integral and its applications, McGraw-Hill, New York.

    Google Scholar 

  • Pennington, K.S., Will, P.M., Shelton, G.L. (1970), Grid coding: A technique for extraction of differences from scenes, Opt. Commun. 2: 113.

    Article  Google Scholar 

  • Rogers, W. L.’ Han, K.S., Jones, L. W., Beierwaltes, W. H. (1972), Application of a Fresnel zone plate to gamma-ray imaging, J. Nucl. Med. 13: 612.

    PubMed  CAS  Google Scholar 

  • Rogers, W.L., Jones, L. W., Beierwaltes, W.H. (1973), Imaging in nuclear medicine with incoherent holography, Opt. Eng. 12: 13.

    Article  Google Scholar 

  • Simpson, R.G. (1976), Decoding of annular coded aperture images, in Program of the Optical Society of America Annual Meeting, Tucson, Arizona, October 1976, American Institute of Physics, New York.

    Google Scholar 

  • Simpson, R.G., Barrett, H.H., Subach, J. A., Fisher, H.D. (1975), Digital processing of annular coded aperture imagery, Opt. Eng. 14: 490.

    Article  Google Scholar 

  • Simpson, R.G., Barrett, H.H., Fisher, H.D. (1976), Decoding techniques for use with annular coded apertures, in International Conference on Applications of Holography and Optical Data Processing, Jerusalem, Israel, Aug. 23–26, 1976.

    Google Scholar 

  • Simpson, R.G., Barrett, H.H., Kelly, J.G., Stalker, K.T. (1977), Some applications of one-dimensional coded apertures, in Proceedings of the SPIE, X-Ray Imaging. Vol. 106, p. 71.

    Chapter  Google Scholar 

  • Stroke, G. W., Hayat, G.S., Hoover, R.B., Underwood, J.H. (1969), X-ray imaging with multiple pinhole cameras using a posteriori holographic image synthesis, Opt. Commun. 1: 138.

    Article  Google Scholar 

  • Tamura, P. (1976), private communication.

    Google Scholar 

  • Tanaka, E., Iinuma, T.A. (1975), Image processing for coded aperture imaging and an attempt at rotating slit imaging, in Information Processing in Scintigraphy ( C. Raynaud and A. Todd-Pokropek, eds.), Commissariat a l’Energie Atomique, Orsay, France.

    Google Scholar 

  • Tipton, M.D., Dowdy, J.E., Caulfield, H.J. (1973), Coded aperture imaging with on- axis Fresnel zone plates, Opt. Eng. 12: 166.

    Article  Google Scholar 

  • Tipton, M.D., Dowdy, J.E., Bonte, F.J., Caulfield, H.J. (1974), Coded aperture imaging using on-axis Fresnel zone plates and extended gamma-ray sources, Radiology 112: 155.

    PubMed  CAS  Google Scholar 

  • Tipton, M.D., Dowdy, J.D., Stokely, E.M. (1976), Background suppression of multiple pinhole-coded aperture scintigrams, in 4th International Conference on Medical Physics, Sponsored by AAPM, Ottawa, Canada, July 1976.

    Google Scholar 

  • Walton, P.W. (1973), An aperture imaging system with instant decoding and tomographic capabilities, J. Nucl. Med. 14: 861.

    PubMed  CAS  Google Scholar 

  • Weiss, H. (1975), Nonredundant point distribution for coded aperture imaging with application to 3-dimensional online X-ray information retrieving, IEEE Trans. Comp. 24: 391–394.

    Article  Google Scholar 

  • Whitehead, F.R. (1976), A comparison of coded aperture imaging systems containing zone plate and random-phase code functions, Ph.D. dissertation, University of Arizona.

    Google Scholar 

  • Wilson, D.T., Barrett, H.H., DeMeester, G.D., Farmelant, M.H. (1973), Point source artifacts in Fresnel zone plate imaging, Opr. Eng. 12: 133.

    Google Scholar 

  • Wilson, B.C., Parker, R.P., Dance, D. R. (1975), Digital processing of images from a zone plate camera, Phys. Med. Biol. 20: 757.

    Article  PubMed  CAS  Google Scholar 

  • Wouters, A., Simon, K.M., Hirschberg, J.G. (1973), Direct method of decoding multiple images, Appl. Opt. 12: 1871.

    Article  PubMed  CAS  Google Scholar 

  • Young, N.O. (1963), Photography without lenses or mirrors, Sky Telescope 25: 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Simpson, R.G., Barrett, H.H. (1980). Coded-Aperture Imaging. In: Nudelman, S., Patton, D.D. (eds) Nuclear Medicine, Ultrasonics,and Thermography. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-3671-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-3671-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-3673-0

  • Online ISBN: 978-1-4684-3671-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics