Advertisement

A Review of Gamma Camera Technology for Medical Imaging

  • Ronald E. McKeighen
Chapter

Abstract

The ability to visualize the uptake within the body of radio-labeled pharmaceuticals spawned the now clinically established field of nuclear medicine. Pioneering studies were done with single-crystal PMT detectors mechanically scanned over the patient in raster fashion. The practice of nuclear medicine achieved a milestone with the invention in 1956 by Hal Anger of the scintillation camera. With this, activity could be processed in real time making dynamic blood flow studies possible and greatly reducing imaging times for static studies. In a scintillation camera the x,y coordinate of each gamma ray interaction in the detector is determined and a spot of light is electronically generated in a corresponding position on the face of a display device (CRT). Each such spot contributes to the latent image on photographic film. The overlap of several of these spots results in a visible dot on the film whose brightness is proportional to the number of overlapped events. The “image” of the object radioactive source distribution is consequently the result of hundreds of these dots recorded on the film.

Keywords

Gamma Camera Pulse Height Image Intensifier Anode Wire Scintillation Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allemand, R., Laval, M., Prunier, J. F. (1971), The use of liquefied noble gases: a new prospect for x-ray and x-ray localization detectors, Int. J. Appl. Radiat. Isot. 22: 633–634.CrossRefGoogle Scholar
  2. Anger, H.O. (1958), Scintillation camera, Rev. Sci. Instrum. 29 (1): 27–33.CrossRefGoogle Scholar
  3. Anger, H.O. (1966a), Survey of radioisotope cameras, ISA Trans. 5 (4): 311–334.Google Scholar
  4. Anger. H.O.(1966b), Sensitivity, resolution, and linearity of the scintillation camera, IEEE Trans. Nucl. Sci. NS 13 (3): 380–391.Google Scholar
  5. Anger, H.O. (1967), Radioisotope cameras, in Hine, G.J. (ed.), Instrumentation in Nuclear Medicine, Vol. 1, Academic Press, New York, pp. 485–550.Google Scholar
  6. Armantrout, G.A., Wichner, R., Swierkowski, S.P. (1974), Encapsulation of high- purity germanium detectors, IEEE Trans. Nucl. Sci. NS 21 (1): 344–346.CrossRefGoogle Scholar
  7. Baker, R.G., Scrimger, J.W. (1967), An investigation of the parameters in scintillation camera design, Phys. Med. Biol 12 (1): 51–63.PubMedCrossRefGoogle Scholar
  8. Barrett, H.H. (1972), Fresnel zone plate imaging in nuclear medicine, J. Nucl. Med. 13: 382–385.PubMedGoogle Scholar
  9. Barrett, H.H., De Meester, G.D. (1974), Quantum noise in fresnel zone plate imaging, Appl Opt. 13 (5): 1100–1109.PubMedCrossRefGoogle Scholar
  10. Beck, R.N. (1968), A note on crystal efficiency, in Fundamental Problems in Scanning, Charles C. Thomas, Springfield, Illinois, pp. 229–230.Google Scholar
  11. Ben Zeev, D., Kelin, Y., Sabbah, B., et al. (1973), New concepts for imaging instruments, J. Nucl. Med. 14: 379, 380.Google Scholar
  12. Bender, M.A., Blau, M. (1963), The autofluoroscope, Nucleonics 21 (10): 52–56.Google Scholar
  13. Berninger, W. H. (1974), Monolithic gamma detector arrays and position sensitive detectors in high purity germanium, IEEE Trans. Nucl. Sci. NS 21: 374–378.CrossRefGoogle Scholar
  14. Berninger, W. H. (1974), Pulsed optical and electron beam excitation of silicon position sensitive detectors, IEEE Trans. Nucl. Sci. NS 21 (1): 386–389.CrossRefGoogle Scholar
  15. Bertolini, G., Cappellani, F., Restelli, G. (1973), Current state of the art in semiconductor detectors, Nucl. Instrum. Methods 112: 219–228.Google Scholar
  16. Blum, A.S. (1974), A scintillation camera, IEEE Trans. Nucl. Sci. NS 21 (1): 695–696.CrossRefGoogle Scholar
  17. Bok, B. D., Fonroget, F. (1975), A new whole-body unidirectional moving scanner: comparative study of performance, J. Nucl. Med. 16: 516.Google Scholar
  18. Bonazzola, G.C., Bressani, T., Chiavassa, E., et al. (1972), A simple coding system for multi- wire proportional counters, Nucl. Instrum. Methods 98: 273–277.CrossRefGoogle Scholar
  19. Borkowski, C.J., Kopp, M.K. (1970), Some applications and properties of one and two dimensional position sensitive proportional counters, IEEE Trans. Nucl. Sci. NS 17 (3): 340–349.CrossRefGoogle Scholar
  20. Borkowski, C.J., Kopp, M.K. (1972), Proportional counter photon camera. IEEE Trans. Nucl. Sci. NS 19 (3): 161–168.CrossRefGoogle Scholar
  21. Burns, J. (1961), Imaging multiplier phototube for a gamma-ray pinhole camera, TID–14559.Google Scholar
  22. Charpak, G. (1970), Evolution of the automatic spark chambers, in Ann. Rev. Nucl. Sci. 20: 195–254.Google Scholar
  23. Charpak, G., Fischer, G., et al. (1971), Some features of large multiwire proportional chambers, Nucl. Instrum. Methods 97: 377–388.CrossRefGoogle Scholar
  24. Conde, C. A.N., Policarp, A. J.P.L., Alves, M. A.F. (1968), Gas proportional scintillation counter with xenon and xenon mixtures, IEEE Trans. Nucl Sci. NS 15 (3): 84–91.CrossRefGoogle Scholar
  25. Conrad, B. (1969), A detector for determining the distribution of radioactive materials, Great Britain patent No. 1,174,558 awarded to Siemens Aktiengesellschaft, December 1969.Google Scholar
  26. Crawley, J.C.W., Veall, N. (1973), The design and some clinical applications of a hybrid scanner, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 105–112.Google Scholar
  27. Davis, T.P., Martone, R.J. (1966), The hybrid radioisotope scanner, J. Nucl. Med. 7: 114–127.Google Scholar
  28. Detko, J.F. (1973), A prototype, ultra pure germanium orthogonal strip gamma-camera, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 241–254.Google Scholar
  29. Dhawan, S. (1973), A survey of proportional wire chamber electronics and readout systems, IEEE Trans. Nucl. Sci. NS 20 (1): 166–171.CrossRefGoogle Scholar
  30. DiRocco, J. V., Grenier, R.P. (1967), Addressing of the 294 crystal mosaic of the digital autofluoroscope, IEEE Trans. Nucl. Sci. NS 14 (1): 204–210.CrossRefGoogle Scholar
  31. Dolgosheim, B.A., Lebedenko, V.N., Rodionov, B.V. (1967), Luminescence induced by alpha particles in liquid xenon in an electric field, JET? Lett. [English Transl.] 6: 224.Google Scholar
  32. Driard, B.,Rozieres, G., Verat, M. (1976), A large field image intensifier tube for scintillation cameras, IEEE Trans. Nucl. Sci. NS 23 (1): 502–506.Google Scholar
  33. Entine, G. (1974), Radiation Monitoring Devices, Inc., private communication.Google Scholar
  34. Freedman, G.S., Goodwin, P.N., Johnson, P.M., et al (1969), The image intensifier camera and single-crystal camera: a comparative evaluation, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 31–42.Google Scholar
  35. Gelezunas, V.L. (1974), The effect of exposure to various gaseous environments on the subsequent performance of high purity germanium gamma ray detectors, IEEE Trans. Nucl. Sci. NS 21: 360–369.CrossRefGoogle Scholar
  36. Glass, H.I., Hudson, F.R., French, M.T., et al. (1973), A 70 mm diameter germanium detector medical radioisotope scanner, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 79–103.Google Scholar
  37. Grenier, R.P., Bender, M.A., Jones, R.H. (1974), A computerized multi-crystal scintillation gamma camera, in Hine, G., Sorenson, J. A. (eds.), Instrumentation in Nuclear Medicine, Vol. 2, Academic Press, New York, pp. 101–134.Google Scholar
  38. Grove, R., Ko, I., et al. (1972), Phase compensated electromagnetic delay lines for wire chamber readout, Nucl. lustrum. Methods 99: 381–385.CrossRefGoogle Scholar
  39. Held, D., Weisskopf, M.C. (1973), A position sensitive x-ray detector for the HEAO-A satellite, IEEE Trans. Nucl Sci. NS 20 (1): 140–144.CrossRefGoogle Scholar
  40. Hine, G.J., Paras, P. (1975), Performance of scintillation cameras, J. Nucl Med. 16: 1206–1207.PubMedGoogle Scholar
  41. Hoffer, P.B., Beck, R.N. (1971), Effects of minimizing scatter using Ge(Li) detectors on phantom models and patients, in Hoffer, P.B., Beck, R.N., Gottschalk, A. (eds.), Semiconductor Detectors in the Future of Nuclear Medicine, Society of Nuclear Medicine, New York, pp. 131–143.Google Scholar
  42. Jaszczak, R.J. (1974), Searle Analytic, Inc., private communication.Google Scholar
  43. Jaszczak, R.J., Huard, D., Murphy, P.H., et al. (1976), Radionuclide emission computed tomography with a scintillation camera, J. Nucl Med. 17: 551.Google Scholar
  44. Kaplan, S.N., Kaufman, L., Perez-Mendez, W., et al (1973), Multiwire proportional chambers for biomedical application, Nucl. Instrum. Methods 106: 397–406.CrossRefGoogle Scholar
  45. Kaufman, L., Perez-Mendez, W., et al. (1972), A multiwire proportional chamber for nuclear medicine applications, IEEE Trans. Nucl. Sci. NS 19 (3): 169–172.CrossRefGoogle Scholar
  46. Kaufman, L., Perez-Mendez, W., Stoker, G. (1973), Performance of a pressurized xenon filled multiwire proportional chamber, IEEE Trans. Nucl. Sci. NS 20 (1): 426–428.CrossRefGoogle Scholar
  47. Kaufman, L., Hattner, R., Price, D., et al (1975), Imaging with a small ultra pure germanium gamma-camera, IEEE Trans. Nucl. Sci. NS 22 (1): 395–403.CrossRefGoogle Scholar
  48. Kenny, P.J. (1971), Spatial resolution and countrate capacity of a positron camera: some experimental and theoretical considerations, Int. J. Appl. Radiat. Isot. 22: 21–28.CrossRefGoogle Scholar
  49. Kulberg, G.H., van Dijk, H., Muehllehner, G. (1972), Improved resolution of the Anger scintillation camera through the use of threshold preamplifiers, J. Nucl. Med. 13: 169–171.PubMedGoogle Scholar
  50. Lansiart, A., Lequais, J., Roux, G., Morucci, J. P., Gaucher, J.C. (1969), Detecteur stationnaire a gaz et nouveau type de gammascope, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 87–98.Google Scholar
  51. Larsen, R. S. (1972), Interlaboratory development of an integrated circuit for multiwire proportional chambers, IEEE Trans. Nucl. Sci. NS 19 (1): 483–494.CrossRefGoogle Scholar
  52. Larsen, R. S. (1973), A hybrid integrated circuit for multiwire proportional chambers, IEEE Trans. Nucl. Sci. NS 20 (1): 172–181.CrossRefGoogle Scholar
  53. Lavoie, L. (1973), Use of inert element scintillators in nuclear medicine. Published in Proceedings of the symposium on Advanced Technology Arising from Particle Physics Research, held at Argonne National Laboratory, May 17, 1973 (Conf–730541–2).Google Scholar
  54. Lee, Lap Yen (1973), Optical-binary coded position sensitive radiation detector, U.S. Patent No. 3,758,780, September 11, 1973.Google Scholar
  55. Llacer, J. (1973), Ultimate capabilities of detectors with high energy resolution in radio-isotope scanning, IEEE Trans. Nucl. Sci. NS 20 (1): 273–281.CrossRefGoogle Scholar
  56. Llacer, J., Cho, Z. H. (1973), Preliminary study of a germanium three dimensional camera for positron emitting radioisotopes, IEEE Trans. Nucl. Sci. NS 20 (1): 282–293.CrossRefGoogle Scholar
  57. Llacer, J., Watt, M., Schieber, M., et al. (1974), Preliminary studies of charge carrier transport in mercuric iodide radiation detectors, IEEE Trans. Nucl. Sci. NS 21 (1): 305–314.CrossRefGoogle Scholar
  58. Luc Moretti, J., Mensch, B., Guey, A., et al. (1976), Comparative assessment of scintillation camera performance, Radiology 119: 157–165.Google Scholar
  59. Mallard, J R., Myers, M.J. (1963), The performance of a gamma camera for the visu-alization of radioactive isotopes in vivo, Phys. Med. Biol. 8 (2): 165–182.PubMedCrossRefGoogle Scholar
  60. Mallard, J R., Wilkes, P.J. (1969), The Abergammascope, an image intensifier gamma camera, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 3–16.Google Scholar
  61. Malm, H.L. (1972), A mercuric iodide gamma-ray spectrometer, IEEE Trans. Nucl. Sci. NS 19 (3): 263–265.CrossRefGoogle Scholar
  62. Malm, H.L., Martini, M. (1974), Polarization phenomena in CdTe nuclear radiation detectors, IEEE Trans. Nucl. Sci. NS 21 (1): 322–330.CrossRefGoogle Scholar
  63. Martone, R.J., Goldman, S C., Wolczek, W. (1974), Scintillation camera with improved light diffusion, U. S. Patent No. 3,814,938, June 1974.Google Scholar
  64. McCready, V. R., Parker, R.P., Gunnersen. E.M., et al. (1971), Clinical test on a prototype semiconductor gamma-camera, Br. J. Radiol. 44: 58.PubMedCrossRefGoogle Scholar
  65. Miraldi, F., Di Chiro, G. (1970), Tomographic techniques in radioisotope imaging with a proposal of a new device: the Tomoscanner, Radiology 94: 513–520.PubMedGoogle Scholar
  66. Mitchell, J. G., Mallard, J. R., et al. (1973), Towards a fine resolution image intensifier gamma camera: the Abergammascope, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 157–167.Google Scholar
  67. Moody, N.F., Paul, W., Joy, M. (1969), A versatile gamma-ray camera for dynamic or static studies in medicine, IEEE Trans. Nucl. Sci. NS 16 (2): 3–18.CrossRefGoogle Scholar
  68. Moody, N.F., Paul, W., Joy, M. (1970), A survey of medical gamma-ray cameras, IEEE Proc. 58 (2): 217–242.CrossRefGoogle Scholar
  69. Moody, N. F., Joy, M., Paul, W. (1973), An image intensifier gamma-ray camera, and its variants, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 255–267.Google Scholar
  70. Morucci, J. P., Lansiart, A. (1970), Investigation of light emission by electron avalanches in binary mixtures where xenon is the parent constituent. Attempted interpretation of the visible continuum emitted by xenon, IEEE Trans. Nucl. Sci. NS 17 (3): 95–106.CrossRefGoogle Scholar
  71. Muehllehner, G. (1972), Searle Analytic, Inc., private communication.Google Scholar
  72. Muehllehner, G. (1972), Radiation imaging apparatus, U. S. Patent No. 3, 683, 185. August 1972.Google Scholar
  73. Muehllehner, G. (1975), Positron camera with extended counting rate capability, J. Nucl. Med. 16: 653–657.PubMedGoogle Scholar
  74. Muehllehner, G., Luig, H. (1973), Septal penetration in scintillation camera collimators, Phys. Med. Biol. 18 (6): 855–862.PubMedCrossRefGoogle Scholar
  75. Muehllehner, G., Buchin, M.P., Dudek, J.H. (1976), Performance parameters of a positron imaging camera, IEEE Trans. Nucl. Sci. NS 23 (1): 528–537.CrossRefGoogle Scholar
  76. Muller, R. A., Derenzo, S.E., Alvarez, L. W., et al (1971), Liquid filled proportional counter, Phys. Rev. Lett. 27: 532–535.CrossRefGoogle Scholar
  77. Murphy, P.H., Burdine, J.A., Moyer, R.A. (1975), Converging collimation and a large- field-of-view scintillation camera, J. Nucl. Med., 16: 1152–1157.PubMedGoogle Scholar
  78. Northrup, J. A., Nobles, R.A. (1956), Some aspects of gas scintillation counters, IRE Trans. Nucl. Sci. NS 3: 59–61.CrossRefGoogle Scholar
  79. Northrup, J. A., Gursky, J.M., Johnsrud, A.E. (1958), Further work with noble element scintillators, IRE Trans. Nucl. Sci. NS 5 (3): 81–87.CrossRefGoogle Scholar
  80. Oppenheim, B.E., Hoffer, P. B., Gottschalk, A. (1976), Nuclear imaging: a new dimension, Radiology 118: 491–494.PubMedGoogle Scholar
  81. Owen, R.B., Awcock, M.L. (1968), One and two dimensional position sensing semi-conductor detectors, IEEE Trans. Nucl. Sci. NS 15 (3): 290–303.CrossRefGoogle Scholar
  82. Palms, J.M. (1971), Newer developments in detector design and materials, in Hoffer, P.B., Beck, R.N., Gottschalk, A. (eds.), Semiconductor Detectors in the Future of Nuclear Medicine, Society of Nuclear Medicine, New York, pp. 59–77.Google Scholar
  83. Parker, R.P., Gunnersen, E.M., Ellis, R., Bell, J. (1973), A semiconductor gamma- camera: assessment of results, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 193–216.Google Scholar
  84. Planiol, T.H., Floyrac, R., Itti, R., et al. (1973), La scintigraphic au lit du malade. Resultats obtenus a l’aide d’un scintigraphe hybride portatif, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 113–119.Google Scholar
  85. Policarpo, A.J.P.L., Conde, C.A.N., Alves, M.A.F. (1968), Large light output gas proportional scintillation counters, Nucl. Instrum. Methods 58: 151–156.CrossRefGoogle Scholar
  86. Rindi, A., Perez-Mendez, V., Wallace, R.I. (1970), Delay line readout for proportional chambers, Nucl. Instrum. Methods 77: 325–327.CrossRefGoogle Scholar
  87. Rogers, W. L., Han, K.S., Jones, L.W., et al. (1972), Application of a Fresnel zone plate to gamma-ray imaging, J. Nucl. Med. 13: 612–615.PubMedGoogle Scholar
  88. Rohrmann, C.A. (1971), Fission product xenon and krypton, an opportunity for large scale utilization, Isot. Radiat. Technol. 8 (3): 253–260.Google Scholar
  89. Sarocka, L. (1973), Air Products and Chemicals Inc., Specialty Cases Department, private communication.Google Scholar
  90. Schlosser, P.A., Miller, D.W., Gerber, M.S., et al. (1974), A practical gamma-ray camera system using high-purity germanium, IEEE Trans. Nucl Sci. NS 21 (1): 658–664.CrossRefGoogle Scholar
  91. Scrimger, J.W., Baker, R.G. (1967), Investigation of light distribution from scintillations in a gamma camera crystal, Phys. Med. Biol. 12 (1): 101–103.PubMedCrossRefGoogle Scholar
  92. Serreze, H.B., Entine, G., Wald, F.V. (1974), Advances in CdTe gamma-ray detectors, IEEE Trans. Nucl. Sci, NS 21 (1).Google Scholar
  93. Siffert, P., Cornet, A., Stuck, R., et al. (1975), Cadmium telluride nuclear radiation detectors, IEEE Trans. Nucl Sci. NS 22 (1): 211–225.CrossRefGoogle Scholar
  94. St. Onge, R. (1973), A high resolution, high efficiency proportional counter X-ray camera, IEEE Trans, Nucl Sci. NS 20 (1): 333.CrossRefGoogle Scholar
  95. Strauss, M.G., Sherman, I.S. (1972), Gamma-ray camera using a coaxial germanium detector, J. Nucl. Med. 13: 767.PubMedGoogle Scholar
  96. Strauss, M.G., Sherman, I.S. (1975), Imaging efficiency of Ge and Nal(Tl) gamma-ray detectors, IEEE Trans. Nucl, Sci. NS 22 (1): 331–343.CrossRefGoogle Scholar
  97. Svedberg, J.B. (1969), Improved pulse arithmetics for a gamma camera system, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 125–134.Google Scholar
  98. Svedberg, J.B. (1972), On the intrinsic resolution of a gamma camera system, Phys. Med. Biol. 17 (4): 514–524.PubMedCrossRefGoogle Scholar
  99. Svedberg, J.B. (1973), Computed intrinsic efficiencies and modulation transfer functions for gamma cameras, Phys. Med. Biol 18 (5).Google Scholar
  100. Svedberg, J.B. (1975), Computer simulation of the Anger gamma camera, Comput. Programs Biomed. 4: 189–201: 189–201Google Scholar
  101. Swanson, F.’ Kuehne, F., Favale, A. (1973), High spatial resolution MWPC systems using electromagnetic delay line readouts, IEEE Trans. Nucl. Sci. NS 20 (1): 160–165.CrossRefGoogle Scholar
  102. Tanaka, E., Hiramoto, T., Nohara, N. (1970), Scintillation cameras based on new position arithmetics, J. Nucl. Med. 11: 542–547.PubMedGoogle Scholar
  103. Ter-Pogossian, M. (1969), The magnacamera, an image-intensifier radioisotope camera, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 151–159.Google Scholar
  104. Ter-Pogossian, M.M., Phelps, M.E. (1973), Semiconductor detector systems, Semin. Nucl. Med. 3 (4): 343–365.PubMedCrossRefGoogle Scholar
  105. Thomas, F.D., Beierwaltes, W.H., et al. (1969), A new scintillation camera, in Medical Radioisotope Scintigraphy, Vol. 1, IAEA, Vienna, pp. 43–55.Google Scholar
  106. Todd, R.W. (1975), Methods and apparatus for determining the spatial distribution of a radioactive material, U. S. Patent No. 3, 876, 882, April 1975.Google Scholar
  107. Todd, R.W., Nightingale, J.M., Everett, D.B. (1974), A proposed y-camera, Nature 251: 132–134.CrossRefGoogle Scholar
  108. Vetter, H.G., Pizer, S.M. (1971), A measure for radioisotope scan image quality, J. Nucl. Med. 12: 526–529.PubMedGoogle Scholar
  109. Whitehead, F.R. (1978), Minimum detectable gray scale differences in nuclear medicine images, J. Nucl. Med. 19: 87–93.PubMedGoogle Scholar
  110. Zaklad, H. (1971), A purification system for the removal of electronegative impurities from noble gases for noble-liquid nuclear particle detectors, thesis, Lawrence Radiation Laboratory Report UCRL–20690, April 1971.Google Scholar
  111. Zaklad, H., Derenzo, S.E., Muller, R.A., et al. (1972), A liquid xenon radioisotope camera, IEEE Trans. Nucl. Sci. NS 19 (3): 206–213.CrossRefGoogle Scholar
  112. Zaklad, H., Derenzo, S.E., Muller, R.A., et al (1973a), Initial images from a 24 wire liquid xenon gamma camera, IEEE Trans. Nucl. Sci. NS 20 (1): 429–431.CrossRefGoogle Scholar
  113. Zaklad, H., Derenzo, S.E., Smits, R.G. (1973b), Liquid-xenon gamma camera—Progress report, J. Nucl. Med. 14: 645.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Ronald E. McKeighen
    • 1
  1. 1.Searle Diagnostics, Inc.Des PlainesUSA

Personalised recommendations