Ultrasonic Imaging: Basic Principles

  • Theodore Bowen


Medical diagnostic imaging with sound waves usually carries the label “ultrasonic” because, as will be shown in the following review, the frequency range useful for diagnostic imaging (1–10 MHz) is well above the hearing range (20-20,000 Hz). The corresponding wavelengths (1.5–0.15 mm) of the imaging waves are much larger than the electromagnetic wavelengths of light or X-rays. In fact, in ultrasonic imaging one must strive to design systems in which the resolution is comparable to the wavelengths of the illuminating radiation; only in the design of optical microscopes does one approach the wavelength limit of resolution in medical-imaging systems using electromagnetic waves. In radar imaging of aircraft and terrain one attempts to approach the wavelength limit of resolution, so there are many similarities between radar and ultrasonic diagnostic techniques.


Wave Packet Ultrasonic Wave Piezoelectric Material Acoustic Impedance Ultrasonic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W.A., Arnold, J.T., Clark, L.D., Davids, W.T., Hillard, W.J., Lehr, W.J., Zitelli, L.T. (1977), A new real-time phased-array sector scanner for imaging the entire adult human heart, in White, D., Brown, R.E. (eds.), Ultrasound in Med., Vol. 3B, Plenum Press, New York.Google Scholar
  2. Baker, D.W., Johnson, S.L. (1975), Doppler echocardiography, in Cardiac Ultrasound, Gramiak, R., Waag, R.C. (eds.), Mosby Press, St. Louis, pp. 264–276.Google Scholar
  3. Barber, F.E., Lees, S., Lobene, R.R. (1969), Ultrasonic pulse—echo measurements in teeth, Archs. Oral Biol. 14: 745.CrossRefGoogle Scholar
  4. Barber, F.E., Baker, D.W., Nation, A.W.C., Strandness, D.E., Jr., Reid, J.M. (1974), Ultrasonic duplex echo-Doppler scanner, IEEE Trans. Biomed. Eng. BME 21: 109.CrossRefGoogle Scholar
  5. Beranek, L.L. (1963a), Acoustical definitions, American Institute of Physics Handbook, 2nd ed., McGraw-Hill, New York, Sec. 3, p. 2.Google Scholar
  6. Beranek, L. L. (1963b), Acoustic properties of Gases, American Institute of Physics Handbook, 2nd ed., McGraw-Hill, New York, Sec. 3, p. 65.Google Scholar
  7. Bom, N., Lancee, C.T., Honkoop, J., Hugenholtz, P.G. (1971), Ultrasonic viewer for cross-sectional analysis of moving cardiac structures, Biomed. Eng. 6: 500.Google Scholar
  8. Bowen, T., Connor, W.G., Nasoni, R.L., Pifer, A.E., Sholes, R.R. (1977), Measurement of the temperature dependence of the velocity of ultrasonic in soft tissues, in Proceedings of Second International Symposium on Ultrasonic Tissue Characterization, Gaithersburg, MD, June 13–15, 1977, Linzer M. (eds.), National Bureau of Standards Special Publication 525, p. 57.Google Scholar
  9. Bradfield, G. (1970), Ultrasonic transducers, Ultrasonics 8: 177.CrossRefGoogle Scholar
  10. Buschmann, W., Voss, M., Kemmerling, S. (1970), Acoustic properties of normal human orbit tissues, Ophthalm. Res. (Basel) 1: 354.CrossRefGoogle Scholar
  11. Carstensen, E.L., Li, K., Schwan, H.P. (1953), Determination of the acoustic properties of blood and its components, J. Acoust. Soc. Am. 25: 286.CrossRefGoogle Scholar
  12. Carstensen, E.L., Schwan, H.P. (1959a), Absorption of sound arising from the presence of intact cells in blood, J. Acoust. Soc. Am. 31: 185.CrossRefGoogle Scholar
  13. Carstensen, E.L., Schwan, H.P. (1959b), Acoustic properties of hemoglobin solutions, J. Acoust. Soc. Am. 31: 305.CrossRefGoogle Scholar
  14. Daly, C.H., Wheeler, J.B., III (1971), Int. Dent. J. 21: 418.PubMedGoogle Scholar
  15. Del Grosso, V. A. (1970), Sound speed in pure water and sea water, J. Acoust. Soc. Am. 47: 947.CrossRefGoogle Scholar
  16. Dunn, F., Fry, W.J. (1961), Ultrasonic absorption and reflection by lung tissue, Phys. Med. Biol 5: 401.Google Scholar
  17. Dunn, F., O’Brien, W. D., Jr. (eds.) (1976), Ultrasonic Biophysics, Dowden, Hutchinson & Ross, Stroudsburg, Pennsylvania.Google Scholar
  18. Edmonds, P.D., Bauld, T.J., III, Dyro, J.F., Hussey, M. (1970), Ultrasonic absorption of aqueous hemoglobin solutions, Biochim. Biophys. Acta 200: 174.PubMedCrossRefGoogle Scholar
  19. Eggleton, R.C. (1976), State-of-the-art of single-transducer ultrasonic imaging technology, Med. Phys. 3: 303.PubMedCrossRefGoogle Scholar
  20. Fay, R.D. (1957), Acoustic properties of liquids, American Institute of Physics Handbook, McGraw-Hill, New York, Sec. 3, p. 72.Google Scholar
  21. Fieler, F.D., Pocock, P. (1968), Foetal blood flow detector, Ultrasonics 6: 240.CrossRefGoogle Scholar
  22. Fry, F.J., Heimburger, R.F., Gibbons, L.V., Eggleton, R.C. (1970), Ultrasound for visualization and modification of brain tissue, IEEE Trans. Sonics Ultrason. SU 17: 165.CrossRefGoogle Scholar
  23. Goldman, R. (1962), Ultrasonic Technology, Reinhold Press, New York.Google Scholar
  24. Goldman, D.E., Hueter, T.F. (1957), Tabular data of the velocity and Absorption of high-frequency sound in mammalian tissues, J. Acoust. Soc. Am. 28:35, 1956; Errata: 29: 655.Google Scholar
  25. Gramiak, R., Waag, R.C., (eds.) (1975), Cardiac Ultrasound, Mosby Press, St. Louis.Google Scholar
  26. Hunt, F. V. (1963), Propagation of Sound in Fluids, American Institute of Physics, Handbook, 2nd ed., McGraw-Hill, New York, Sec. 3, pp. 56–59.Google Scholar
  27. Hussey, M. (1975), Diagnostic Ultrasound, Blackie, Glasgow.Google Scholar
  28. Kossoff, G. (1974), Display techniques in ultrasound pulse echo investigations: A review, J. Clin. Ultrasound 2: 61.PubMedCrossRefGoogle Scholar
  29. Lang, S.B. (1970), Ultrasonic method for measuring elastic coefficients of bone and results on fresh and dried bovine bone, IEEE Trans. Biomedical Eng. 17: 101.Google Scholar
  30. Ludwig, G.D. (1950), The velocity of sound through tissues and the acoustic impedance of tissues, J. Acoust. Soc. Am. 22: 862.CrossRefGoogle Scholar
  31. Malecki, I. (1969), Physical Foundations of Technical Acoustics, Pergamon/Polish Scientific Publishers, Warsaw.Google Scholar
  32. Marginness, M.G., Plummer, J.D., Beaver, W.L., Meindl, J.D. (1976), State-of-the-art in two-dimensional ultrasonic transducer array technology, Med. Phys. 3: 312.Google Scholar
  33. Mason, W. P. (1950), Piezoelectric Crystals and Their Application to Ultrasonics, Van Nostrand, New York.Google Scholar
  34. Mason, W.P. (1963), Properties of transducer materials, American Institute of Physics Handbook, 2nd ed., McGraw-Hill, New York, Sec. 3, p. 98.Google Scholar
  35. McKinney, W.M., Kato, M., Pou, B., Thurstone, F. L. (1966), Echoencephalography, a practical clinical and research tool, Trans. Am. Neurolog. Assoc. 91: 297.Google Scholar
  36. Morse, P.M. (1948), Vibration and Sound, 2nd ed., McGraw-Hill, New York.Google Scholar
  37. Morse, P.M., Ingard, K.U. (1968), Theoretical Acoustics, McGraw-Hill, New York.Google Scholar
  38. Reid, J.M. (1976), Challenges and opportunities in ultrasound, in Proceedings of Seminar on Ultrasonic Tissue Characterization, Gaithersburg, MD, May 28–30, 1975, National Bureau of Standards Special Publication 453, p. 11.Google Scholar
  39. Robinson, T.C., Lele, P.P. (1972), An analysis of lesion development in the brain and in plastics by high-intensity focused ultrasound at low-megahertz frequencies, J. Acoust. Soc. Am. 51: 1333.PubMedCrossRefGoogle Scholar
  40. Robinson, D.E., Williams, B.G. (1975), Computer acquisition and processing of ultra-sonic data, in Ultrasonics in Medicine, Kazner, E., deVlieger, M., Muller, H.R., McCready, V. R. (eds.), Excerpta Medica, Amsterdam, p. 96.Google Scholar
  41. Schiefer, W., Kazuer, E., Kunze, S.T. (1968), Clinical Echoencephalography, John Wright & Sons, Bristol.Google Scholar
  42. Shaw, A., Paton, J.S., Gregory, N.L., Wheatley, D.J. (1976), A real time 2-dimensional ultrasonic scanner for clinical use, Ultrasonics 14: 35.PubMedCrossRefGoogle Scholar
  43. Shung, K.K., Sigelmann, R.A., Reid, J.M. (1976), The scattering of ultrasound by red blood cells, in Proceedings of Seminar on Ultrasonic Tissue Characterization, Gaithersburg, MD, May 28–30, 1975, National Bureau of Standards Special Publication 453, p. 207.Google Scholar
  44. Somer, J.C. (1968), Electronic sector scanning for ultrasonic diagnosis, Ultrasonics 6: 153.PubMedCrossRefGoogle Scholar
  45. Somer, J.C., Oosterbaan, W. A., Freund, M.J. (1973), Ultrasonic tomographic imaging of the brain with an electronic sector scanning system, in Proceedings of 1973 IEEE Ultrasonics Symposium, IEEE, New York, p. 43.Google Scholar
  46. Theismann, H., Pfander, F. (1949), Strahlentherapie 80: 607.PubMedGoogle Scholar
  47. Thurstone, F.L., von Ramm, O.T. (1974), Electronic beam scanning for ultrasonic imaging, in Ultrasonics in Medicine, deVlieger, M., White, D.N., McCready, V.R. (eds.), Excerpta Medica, Amsterdam, pp. 43–48.Google Scholar
  48. Van Venrooij, G.E.P.M. (1971), Measurement of ultrasound velocity in human tissue, Ultrasonics 9: 240.CrossRefGoogle Scholar
  49. Wells, P.N.T. (1969), A range-gated ultrasonic Doppler system, Med. Biol. Eng. 7: 641.PubMedCrossRefGoogle Scholar
  50. Wells, P.N. (1972), Ultrasonics in Clinical Diagnosis, Williams & Wilkins, Baltimore.Google Scholar
  51. White, D., Brown, R.E. (eds.) (1977), Ultrasound in Medicine, Vol. 3B, Plenum Press, New York.Google Scholar
  52. Whittingham, T. A. (1976), A hand-held electronically switched array for rapid ultrasonic scanning, Ultrasonics 14: 29.PubMedCrossRefGoogle Scholar
  53. Willson, K., Gehrke, J., Gore, J.C., Leeman, S., Oliver, R., Pridie, R.B. (1975), Digital Processing of ultrasonic cardiac images, in Ultrasonics in Medicine, Kazner, E., de- Vlieger, M., Muller, H.R., McCready, V.R. (eds.), Excerpta Medica, Amsterdam, p. 103.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Theodore Bowen
    • 1
  1. 1.Department of PhysicsUniversity of ArizonaTucsonUSA

Personalised recommendations