Magnetic Microspheres in Cell Separation

  • Paul L. Kronick
Part of the Biological Separations book series (BIOSEP)


The term magnetization refers to the appearance of a magnetic dipole of magnitude m in a body, either spontaneously or when it is placed in a magnetic field of magnitude H. The magnetization of a material M is a point variable which depends on the applied magnetic field H and the chemical composition. It is defined as
$$M=m/V $$
where V is the volume of the body. Because in most materials M is zero when H = 0 and increases monotonically with H,a material parameter, the magnetic susceptibility ϰ is defined as
$$X=M/H $$
Most organic materials have small negative values of ϰ and so are diamagnetic. Paramagnetic materials have small positive values of ϰ such as hematite, Fe2O3, (ϰ = 4.54 × 10−9 H/m). Ferromagnetic materials have much larger values; ϰ for iron exceeds 10−2 H/m. Both paramagnetic and ferromagnetic materials can be used for cell separation.


Magnetic Dipole Hydroxyethyl Methacrylate Cell Separation Magnetite Particle Magnetic Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bean, C. P., and Livingston, J. D., 1959, Superparamagnetism, J. Appl. Phys. Suppl. 30: 1205.CrossRefGoogle Scholar
  2. Blakemore, R., 1975, Magnetotactic bacteria, Science 190:377.Google Scholar
  3. Campbell, G. LeM., Schachner, M., and Sharrow, S. W., 1977, Isolation of glial cell enriched and depleted populations from mouse cerebellum by density gradient centrifugation and electronic cell sorting, Brain Res. 127: 69.PubMedCrossRefGoogle Scholar
  4. Campbell, G. LeM., Abramsky, O., and Silberberg, D., 1978, Isolation of oligodendrocytes from mouse cerebellum using magnetic microspheres, Society for Neuroscience Abstracts 4: 64.Google Scholar
  5. Cuatrecasas, P., 1973, Interaction of Vibrio cholerae enterotoxin with cell membranes, Biochemistry, 12: 3547.PubMedCrossRefGoogle Scholar
  6. Cuatrecasas, P., and Parikh, I., 1972, Adsorbents for affinity chromatography. Use of Nhydroxysuccinimide esters of agarose, Biochemistry 11: 2291.PubMedCrossRefGoogle Scholar
  7. De Baeque, C., Johnson, A. B., Naiki, M., Schwarting, G. A., and Marcus, D. M., 1976, Ganglioside localisation in cerebellar cortex: An immunoperoxidase study with antibody to GN11 ganglioside, Brain Res. 114: 117.CrossRefGoogle Scholar
  8. Fodstad, O., Olsnes, S., and Pihl, A., 1977, Inhibitory effect of abrin and ricin on the growth of transplantable murine tumors and of abrin on human cancers in nude mice, Cancer Res. 37: 4559.PubMedGoogle Scholar
  9. Graham, R. C., and Karnovsky, M. J., 1966, The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: Ultrastructural cytochemistry by a new technique, J. Histochem. Cytochem. 14: 291.PubMedCrossRefGoogle Scholar
  10. Graham, D. I., Gonatas, N. D., and Charalampous, F. C., 1974, The undifferentiated and extended forms of C-1300 murine neuroblastoma: Ultrastructural studies and detection of lectin binding sites, Amer. J. Pathol. 76: 285.Google Scholar
  11. Hakomori, S., 1975, Structure and organization of cell surface glycolipids: Dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417: 55.PubMedGoogle Scholar
  12. Hoare, D. G., and Koshland, D. E., 1967, A quantitative method for the quantitative modifi- cation and estimation of carboxylic acid groups in proteins, J. Biol. Chem. 242: 2447.PubMedGoogle Scholar
  13. Hollenberg, M. D., Fishman, P. H., Bennett, V., and Cuatrecasas, P., 1974, Cholera toxin and cell growth: Role of membrane gangliosides, Proc. Natl. Acad. Sci. USA 71: 4224.PubMedCrossRefGoogle Scholar
  14. Kronick, P. L., Campbell, G. LeM., and Joseph, K., 1978, Magnetic microspheres prepared by redox polymerization used in a cell separation based on gangliosides, Science 200: 1074.PubMedCrossRefGoogle Scholar
  15. Lauter, K. J., and Trams, G., 1962, Isolation and characterization of gangliosides, Biochim. Biophys. Acta 60: 350.PubMedCrossRefGoogle Scholar
  16. Lichtenstein, B., 1973, Method and apparatus for lymphocyte separation from blood, U.S. Patent No. 3,709,791 (Jan. 9, 1973 ).Google Scholar
  17. Ljungstedt, I., Eckman, B., and Sjöholm, I., 1978, Detection and separation of lymphocytes with specific surface receptors, by using microparticles, Biochem. J. 170: 161.Google Scholar
  18. Malin, S. F., and Edwards, J., 1972, Detection of hepatitis associated antigen by latex agglutination, Nature New Biol. (London) 2350: 182.Google Scholar
  19. Melville, D., Paul, F., and Roath, S., 1975, Direct magnetic separation of red cells from whole blood, Nature (London) 255: 706.CrossRefGoogle Scholar
  20. Milgrom, F., and Goldstein, R., 1962, Agglutination of sensitized red blood cells by latex particles, Vox Sang. 7: 86.PubMedCrossRefGoogle Scholar
  21. Molday, R. S., Dreyer, W., Rembaum, A., and Yen, S. P. S., 1974, Latex spheres as markers for studies of cell surface receptors by SEM, Nature (London) 249: 81.CrossRefGoogle Scholar
  22. Molday, R. S., Yen, S. P. S., and Rembaum, A., 1977, Application of magnetic microspheres in labelling and separation of cells, Nature (London) 268: 437.CrossRefGoogle Scholar
  23. Oberteuffer, J. 0., 1974, Magnetic separation: A review of principles, devices, and applications, IEEE Trans. Magn. 10 (2): 223.Google Scholar
  24. Olsnes, S., and Pihl, A., 1976, Abrin, ricin, and their associated agglutinins, in Receptors and Recognition Series B: The Specificity and Action of Animal, Bacterial and Plant Toxins, ( P. Cuatrecasas, ed.), pp. 130–173, Chapman and Hall, London.Google Scholar
  25. Olsnes, S., Saltvedt, E., and Pihl, A., 1974, Isolation and comparison of galactose-binding lectins from Abrus precatorius and Ricinus communis, J. Biol. Chem. 249: 803.PubMedGoogle Scholar
  26. Owen, C., 1978, High gradient magnetic separation of erythrocytes, Biophys. J. 22: 171.PubMedCrossRefGoogle Scholar
  27. Papell, S. S., 1965, Low-viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, U. S. Patent 3,215, 572.Google Scholar
  28. Rutishauser, U. S., and Edelman, G. M., 1977, Fractionation and manipulation of cells with chemically modified fibers and surfaces, in Methods of Cell Separation ( N. Catsimpoolas, ed.), Vol. 1, p. 204, Plenum Press, New York.Google Scholar
  29. Sandvig, K., Olsnes, S., and Pihl, A., 1976, Kinetics of binding of the toxic lectins abrin and ricin to surface receptors of human cells. J. Biol. Chem. 254: 3977.Google Scholar
  30. Sandvig, K., Olsnes, S., and Pihl, A., 1978, Binding uptake and degradation of the toxic proteins abrin and ricin by toxin-resistant cell variants, Eur. J. Biochem. 82: 13.PubMedCrossRefGoogle Scholar
  31. Schiller, A. M., and Sven, T. J., 1956, Ionic derivatives of polyacrylamide, Ind. Eng. Chem. 48: 2132.CrossRefGoogle Scholar
  32. Sell, S., and An, T., 1971, Studies on rabbit lymphocytes in vitro. XIV. Fractionation of rabbit peripheral blood lymphocytes by antibody-coated polyacrylamide beads, J. Immunol. 197: 1302.Google Scholar
  33. Stein-Douglas, K., Schwarting, G. A., Naiki, M., and Marcus, D. M., 1976, Gangliosides as markers for murine lymphocyte subpopulations, J. Exp. Med. 143: 822.PubMedCrossRefGoogle Scholar
  34. Weiss, P., 1907, L’Hypothèse du champ moléculaire et la propriété ferromagnétique, J. Phys. 6: 661.Google Scholar
  35. Weston, P. D., and Avrameas, S., 1971, Proteins coupled to polyacrylamide beads using glutaraldehyde, Biochem. Biophys. Res. Commun. 45: 1574.PubMedCrossRefGoogle Scholar
  36. Wichterle, O., and Lim, D., 1960, Hydrophilic gels for biological use, Nature (London) 185: 117.CrossRefGoogle Scholar
  37. Widder, K. J., Senyei, A. E., and Scarpelli, D. G., 1978, Magnetic microspheres: A model system for site specific drug delivery in vivo, Proc. Soc. Exp. Biol. Med. 58: 141.Google Scholar
  38. Yogeeswaran, G., Murray, R. K. Pearson, M. L., Sanwa], B. D., McMorris, F. A., and Ruddle, F. H., 1973, Glycosphingolipids of clonal lines of mouse neuroblastoma x L-cell hybrids, J. Biol. Chem. 248: 1231.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Paul L. Kronick
    • 1
  1. 1.Department of Physical and Life SciencesFranklin Research CenterPhiladelphiaUSA

Personalised recommendations