Advertisement

Computer Analysis of Lymphocyte Images

  • Peter H. Bartels
  • George B. Olson
Part of the Biological Separations book series (BIOSEP)

Abstract

Research on computer analysis of microscopic images of cells concentrates at this time on three major applications. These are the automated recognition of cells from the hematopoietic system, the analysis of epithelial cells and the study of lymphocyte populations. Of these, the first two are clearly related to the immediate needs of the clinical laboratory. White blood cell differential counts are carried out at a rate of more than 100 million per annum in the United States alone. Research and development here has progressed from the first feasibility studies accomplished in the 1960s by Preston (1961) and Preston (1962), Prewitt and Mendelsohn (1966), Ingram et al. (1968), Young (1969), and Bacus (1970) to the commercially available automated white blood cell differential counting devices. For the analysis of epithelial cells, the major effort has concentrated on the clinical cytology of the female reproductive tract (Wied et al., 1976). Here, research toward the improvement of the diagnostic characterization of the material and extensive efforts to automate the prescreening for cervical cancer are underway. Also directed toward early detection and diagnosis of malignant disease, and particularly toward the extraction of prognostic clues, are research projects on image analysis of urothelial cells (Koss et al., 1975, 1977a,b, 1978a; Bartels et al., 1977c) and cells from the respiratory tract (Reale et al., 1978; Wied et al., 1979). The analysis of digitized images of lymphocytes at this time does not have such immediate clinical applications.

Keywords

Cell Image Nuclear Area Supervise Learning Algorithm Bivariate Plot Tolerance Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderberg, N. R., 1973, Cluster Analysis for Applications, Academic Press, New York.Google Scholar
  2. Anderson, R. E., Olson, G. B., Howarth, J. L., Wied, G. L., and Bartels, P. H., 1975a, Computer analysis of defined populations of lymphocytes irradiated in vitro. II. Analysis of thymus dependent vs bone marrow derived cells, Am. J. Pathol. 80: 21.PubMedGoogle Scholar
  3. Anderson, R. E., Olson, G. B., Shank, C., Howarth, J. L., Wied, G. L., and Bartels, P. H., 1975b, Computer analysis of defined populations of lymphocytes irradiated in vitro. I. Evaluation of murine thoracic duct lymphocytes, Acta Cytol. 12 (2): 126.Google Scholar
  4. Anderson, R. E., Olson, G. B., Autry, J. R., Troup, M., and Bartels, P. H., 1977, Radiosensitivity of T and B lymphocytes. IV. Effect of whole body irradiation upon various lymphoid tissues and number of recirculating lymphocytes, J. Immunol. 118: 1191.PubMedGoogle Scholar
  5. Bacus, J. W., 1970, An automated classification of the peripheral blood leukocytes by means of digital image processing, Ph.D. thesis, Department of Physiology, University of Illinois, Chicago.Google Scholar
  6. Bartels, P. H., and Bellamy, J. C., 1970, Self-optimizing, self-learning system in pictorial pattern recognition, Appl. Opt. 9: 2453.PubMedCrossRefGoogle Scholar
  7. Bartels, P. H., and Subach, J. A., 1976, Automated interpretation of complex scenes, in Digital Processing of Biomedical Imagery ( K. Preston and M. Onoe, eds.), p. 101, Academic Press, New York.CrossRefGoogle Scholar
  8. Bartels, P. H., and Wied, G. L., 1975a, Extraction and evaluation of information from digitized cell images, in Mammalian Cells: Probes and Problems (C. R. Richmond, D. F. Petersen, P. F. Mullaney and E. C. Anderson, eds.), p. 15, Proceedings of the First Los Alamos Life Sciences Symposium, Los Alamos, N. M., Oct. 17–19, 1973, Energy Research and Development Administration.Google Scholar
  9. Bartels, P. H., and Wied, G. L., 1975b, High resolution prescreening systems for cervical cancer, in Proceedings of the International Conference on Automation of Uterine Cancer, p. 144, Chicago.Google Scholar
  10. Bartels, P. H. and Wied, G. L., 1977, An image analyzing software system for cytology, in Proceedings of the First International Computer Software and Applications Conference, p. 282, Chicago.Google Scholar
  11. Bartels, P. H., Wied, G. L., and Bahr, G. F., 1968, Cell recognition from equiprobable extinction range contours, Acta Cytol. 12: 202.Google Scholar
  12. Bartels, P. H., Bahr, G. F., Griep, J., Rappaport, H., and Wied, G. L., 1969a, Computer analyses on lymphocytes in transformation. A methodologic study, Acta Cytol. 13: 557.PubMedGoogle Scholar
  13. Bartels, P. H., Bahr, G. F., and Wied, G. L., 19696, Cell recognition from line scan transition probability profiles, Acta Cytol. 13: 210.Google Scholar
  14. Bartels, P. H., Bahr, G. F., Bellamy, J. C., and Wied, G. L., 1970, Self-learning program computer program for cell recognition, Acta Cytol. 14: 486.PubMedGoogle Scholar
  15. Bartels, P. H., Bahr, G. F., Bibbo, M., and Wied, G. L., 1972, Objective cell image analysis, J. Histochem. Cytochem. 20: 239.PubMedCrossRefGoogle Scholar
  16. Bartels, P. H., Bibbo, M., Taylor, J., and Wied, G. L., 1974a, Cell recognition from the statistical dependence of gray values in digitized cell images, Acta Cytol. 18: 165.PubMedGoogle Scholar
  17. Bartels, P. H., Jeter, W. S., Olson, G. B., Taylor, J., and Wied, G. L., 1974b, Evaluation of correlational information in digitized cell images, J. Histochem. Cytochem. 22: 69.PubMedCrossRefGoogle Scholar
  18. Bartels, P. H., Olson, G. B., Jeter, W. S., and Wied, G. L., 1974c, Evaluation of unsupervised learning algorithms in the computer analysis of lymphocytes, Acta Cytol. 18: 376.PubMedGoogle Scholar
  19. Bartels, P. H., Olson, G. B., Layton, J. M., Anderson, R. E., and Wied, G. L., 1975, Computer discrimination of T and B lymphocytes, Acta Cytol. 19: 53.PubMedGoogle Scholar
  20. Bartels, P. H., Bibbo, M., Richards, D., Sychra, J., and Wied, G. L., 1978a, Patient classification based on cytologic sample profiles. I. Basic measures for profile construction, Acta Cytol. 22: 253.PubMedGoogle Scholar
  21. Bartels, P. H., Chen, Y. P., Durie, B. G., Olson, G. B., and Salmon, S. E., 1978b, Discrimination between human T and B lymphocytes by computer analysis of digitized data from scanning microphotometry. II. Discrimination and automated classification, Acta Cytol. 22: 530.PubMedGoogle Scholar
  22. Bartels, P. H., Koss, L. G., Sychra, J. J., and Wied, G. L., 1978c, Indices of cell atypia in urinary tract cytology, Acta Cytol. 22: 387.PubMedGoogle Scholar
  23. Beale, E. M. L., 1969, Euclidean cluster analysis, Bull. Int. Stat. Inst. 43: 92.Google Scholar
  24. Boak, J. L., and Woodruff, M. F. A., 1965, A modified technique for collecting mouse thoracic duct lymph, Nature 205: 396.PubMedCrossRefGoogle Scholar
  25. Boak, J. L., and Woodruff, M. F. A., 1965, A modified technique for collecting mouse thoracic duct lymph, Nature 205: 396.PubMedCrossRefGoogle Scholar
  26. Bradley, J. V., 1968, Distribution-Free Statistical Tests, p. 250, Prentice Hall, Englewood Cliffs, N.J.Google Scholar
  27. Cooley, W. W., and Lohnes, P. R., 1962, Multivariate Data Analysis, p. 226, John Wiley and Sons, New York.Google Scholar
  28. de Campos-Vidal, B., Schlueter, G., and Moore, G. W., 1973, Cell nucleus pattern recognition: Influence of staining, Acta Cytol. 17: 510.Google Scholar
  29. Deitch, A. D., 1966, Cytophotometry of nucleic acids, in Introduction to Quantitative Cytochemistry ( G. L. Wied, ed.), p. 327, Academic Press, New York.Google Scholar
  30. Dixon, W. J., 1967, BMD Biomedical Computer Programs, p. 185, University of California Press, Berkeley.Google Scholar
  31. Duda, O., and Hart, P. E., 1973, Pattern Classification and Scene Analysis, p. 250, John Wiley and Sons, New York.Google Scholar
  32. Durie, B. G., Vaught, M. L., Chen, Y. P., Olson, G. B., Salmon, S. E., and Bartels, P. H., 1978, Discrimination between human T and B lymphocytes, and monocytes by computer analysis of digitized data from scanning microphotometry. I. Chromatin distribution patterns, Blood 51: 579.PubMedGoogle Scholar
  33. Freeman, H., 1961, On the encoding of arbitrary geometric configurations, IEEE Trans. Electron. Comput. 10: 260.CrossRefGoogle Scholar
  34. Fukunaga, K., 1972, Introduction to Statistical Pattern Recognition, p. 90, Academic Press, New York.Google Scholar
  35. Genchi, H., and Mori, K., 1965, Evaluation and feature extraction on automated pattern recognition system, Denki Tsuchin Gakkai Zasshi Part 1 (in Japanese), quoted in Tanaka, N., Ideda, H., Ueno, T., Watanabe, S., Imasato, Y., and Kashida, I., 1976, Fundamental study of an automated cytoscreening system utilizing the pattern recognition system. I. Feature evaluation in the pattern recognition system, in The Automation of Uterine Cancer Cytology ( G. L. Wied, G. F. Bahr, and P. H. Bartels, eds.), pp. 223–227, Tutorials of Cytology, Chicago.Google Scholar
  36. Haralick, R. M., Shanmugam, K., and Dinstein, I., 1973, Textural features for image classification, IEEE Trans. Syst. Man Cybern. 3: 610.CrossRefGoogle Scholar
  37. Harbers, E., and Sandritter, W., 1968, Gesteigerte Heterochromatisierung als pathogenetisches Prinzip. Dtsch. Med. Wochenschr. 93: 269.PubMedGoogle Scholar
  38. Harbers, E., Lederer, B., Sandritter, W., and Spaar, U., 1968, Untersuchungen and Nukleohistonen. IV. Heterochromatisierung in der Rattenleber Waehrend fur Carcinogenese, Virchows Arch. B. 1: 98.Google Scholar
  39. Hartigan, J. A., 1975, Clustering Algorithms, p. 434, Academic Press, New York.Google Scholar
  40. Ingram, M., Norgren, P. E., and Preston, K., 1968, Automatic differentiation of white blood cells, in Image Processing in Biologic Science ( D. M. Ramsey, ed.), p. 97, University of California Press, Berkeley.Google Scholar
  41. Julesz, B., 1962, Visual pattern discrimination, IRE Trans. Inf. Theory 8: 84.CrossRefGoogle Scholar
  42. Julesz, B., 1975, Experiments in the visual perception of texture, Sci. Am. 232: 34.Google Scholar
  43. Julesz, B., Gilbert, E. N., Shepp, L. A., and Frisch, H. L., 1973, Inability of humans to discriminate between visual textures that agree in second order statistics-revisited, Perception 2: 391.PubMedCrossRefGoogle Scholar
  44. Kiefer, J. G., Kiefer, R., and Sandritter, W. W., 1971, Die Dichterverteilung des Chromatins innerhalb des Zellkerns, Verh. Dtsch. Ges. Pathol. 55: 621.PubMedGoogle Scholar
  45. Kiefer, R., Kiefer, J. G., Salm, R., Rossner, R., and Sandritter, W., 1973, A method for the quantitative evaluation of eu-and heterochromatin in interphase nuclei using cytophotometry and pattern analysis, Beitr. Pathol. Anat. 150: 163.CrossRefGoogle Scholar
  46. Kiefer, J. G., Kiefer, R., Moore, G. W., Salm, R., and Sandritter, W., 1974, Nuclear images of cells in different functional states, J. Histochem. Cytochem. 22: 569.PubMedCrossRefGoogle Scholar
  47. Kiehn, T. E., 1972, Computer analysis of transforming lymphocytes, Ph.D. thesis, Department of Microbiology, University of Arizona, Tucson.Google Scholar
  48. Klecka, W. R., Nie, N. H., and Hull, C. H., 1975, srss Statistical Package for the Social Sciences, McGraw-Hill, New York.Google Scholar
  49. Koss, L. G., Bartels, P. H., Bibbo, M., Freed, S. Z., Taylor, J., and Wied, G. L., 1975, Computer discrimination between benign and malignant urothelial cells, Acta Cytol. 19: 378.Google Scholar
  50. Koss, L. G., Bartels, P. H., Bibbo, M., Freed, S. Z., Sychra, J. J., Taylor, J., and Wied, G. L., 1977a, Computer analysis of atypical urothelial cells. I. Classification by supervised learning algorithms, Acta Cytol. 21: 247.PubMedGoogle Scholar
  51. Koss, L. G., Bartels, P. H., Sychra, J. J., and Wied, G. L., 1977b, Computer analysis of atypical urothelial cells. II. Classification by unsupervised learning algorithms, Acta Cytol. 21: 261.PubMedGoogle Scholar
  52. Koss, L. G., Bartels, P. H., Sychra, J. J., and Wied, G. L., 1978a, Computer discriminant analysis of atypical urothelial cells, Acta Cytol. 22: 382.PubMedGoogle Scholar
  53. Koss, L. G., Bartels, P. H., Sychra, J. J., and Wied, G. L., 1978b, Diagnostic cytologic sample profiles in patients with bladder cancer using Tncws system, Acto Cytol. 22: 392.Google Scholar
  54. Kulkarni, A. V., and Kanal, L., 1976, An optimization approach to hierarchial classifier design. Proceedings of the Third International Joint Conference on Pattern Recognition. IEEE Trans. Comput. 76:459 (C 1140–3C ).Google Scholar
  55. Landeweerd, G. H., and Gelsema, E. S., 1978, The use of nuclear texture parameters in the automatic analysis of leukocytes, Pattern Recognition 10: 57.CrossRefGoogle Scholar
  56. McClellan, R. P., 1971. Optimization and stochastic approximation techniques applied to unsupervised learning. Ph.D. thesis, Department of Electrical Engineering, University of Arizona, Tucson.Google Scholar
  57. McKee, P. H. 1975. Computer analyses of lymphocyte alterations induced by immunosuppressive chemical agents. Ph.D. thesis, Department of Microbiology, University of Arizona, Tucson.Google Scholar
  58. McKee, P. H. 1975. Computer analyses of lymphocyte alterations induced by immunosuppressive chemical agents. Ph.D. thesis, Department of Microbiology, University of Arizona, Tucson.Google Scholar
  59. Olson, G. B., Anderson, R. E., and Bartels, P. H., 1974, Differentiation of murine thoracic duct lymphocytes into T and B subpopulations by computer cell scanning techniques, Cell. Immunol. 13: 347.PubMedCrossRefGoogle Scholar
  60. Olson, G. B., Anderson, R. E., and Bartels, P. H., 1979a, Computer analysis of defined populations of lymphocytes irradiated in vitro. III. Evaluation of human T and B cells of peripheral blood origin, Hum. Pathol. 10: 179.PubMedCrossRefGoogle Scholar
  61. Olson, G. B., Anderson, R. E., and Bartels, P. H., 1979b, Characterization of murine T and B cells by computerized microphotometric analysis, Cell Biophysics 1: 229.PubMedCrossRefGoogle Scholar
  62. Olson, G. B., Bartels, P. H., and Anderson, R. E., 1979c, Subclassification of murine T cells by computerized microphotometric analysis, Cell Biophysics 1: 243.PubMedCrossRefGoogle Scholar
  63. Pressman, N. J., 1976a, Optical texture analysis for automatic cytology and histology: A Markovian approach, Ph.D. thesis, Lawrence Livermore Laboratory, University of California, Los Angeles.Google Scholar
  64. Pressman, N. J., 1976b, Markovian analysis of cervical cell images, J. Histochem. Cytochem. 24: 138.PubMedCrossRefGoogle Scholar
  65. Preston, K. 1961, The CELLSCAN system: A leukocyte pattern analyzer, p. 173, Proceedings of the Western Joint Computer Conference.Google Scholar
  66. Preston, K., Jr., 1962, Machine techniques for automatic leukocyte pattern analysis, Ann. N.Y. Acad. Sci. 97: 482.PubMedCrossRefGoogle Scholar
  67. Preston, K., 1976, Digital image analysis in cytology, in Digital Image Analysis ( Azriel Rosenfeld, ed.), Springer Verlag, New York.Google Scholar
  68. Prewitt, J. M. S., 1972, Parametric and nonparametric recognition by computer: An application to leukocyte image processing, Adv. Comput. 12: 285.CrossRefGoogle Scholar
  69. Prewitt, J. M. S., and Mendelsohn, M. L., 1966, The analysis of cell images, Ann. N.Y. Acad. Sci. 128: 1035.PubMedCrossRefGoogle Scholar
  70. Raff, M. D., Sternberg, M., and Taylor, R. B., 1970, Immunoglobulin determinants on surface of mouse lymphoid cells, Nature 225: 553.PubMedCrossRefGoogle Scholar
  71. Reale, F., Bartels, P. H., Bibbo, M. Chen, M., Schreiber, H., and Wied, G. L., 1979, Differentiation by TICAS analysis of cell populations of tracheal aspirates from hamsters with squamous carcinoma, Amer. J. Clin. Pathol. 72: 52.Google Scholar
  72. Reinhardt, E., Erhardt, R., Schwarzmann, P., Bloss, W., and Ott, R., 1979, Structure analysis and classification of cervical cells using a processing system based on TV, Anal. Quant. Cytol. 1: 143.PubMedGoogle Scholar
  73. Richmond, C. R., Petersen, D. F., Mullaney, P. F., and Anderson, E. C. (eds.), 1975, Mammalian Cells: Probes and Problems. Proceedings of the First Los Alamos Life Sciences Symposium, Los Alamos, N.M.,Oct. 17–19, 1973, Energy Research and Development Administration.Google Scholar
  74. Rosenfeld, A., and Troy, E. B., 1970, Visual texture analysis, Computer Science Center Technical Report 70/116, University of Maryland, College Park, Maryland.Google Scholar
  75. Rowinski, J., Pienkowski, M., and Abramszuk, J., 1972, Area representation of optical density of chromatin in resting and stimulated lymphocytes as measured by means of Quantimet, Histochemie 32: 75.PubMedGoogle Scholar
  76. Sandritter, W., and Kiefer, G., 1970, Objectivization of chromatin patterns using the fast-scanning stage of the UMSP1, in Automated Cell Identification and Cell Sorting ( G. L. Wied and G. F. Bahr, eds.), p. 177, Academic Press, New York.Google Scholar
  77. Sandritter, W., Kiefer, G., Schlüter, G., and Moore, W., 1967, Eine cytophotometrische Methode zur Objektivierung der Morphologie von Zellkernen, Histochemie 10: 341.PubMedCrossRefGoogle Scholar
  78. Serra, J., 1974, Theoretical bases of the Leitz Tecture analyzing system, Scientific and Technical Information, Leitz, Wetzlar (Suppl.) 4: 125.Google Scholar
  79. Sherwood, E., Bartels, P. H., and Wied, G. L., 1976, Feature selection in cell image analysis use of the ROC curve, Acta Cytol. 20: 255.PubMedGoogle Scholar
  80. Simon, H., Kunze, K. D., Voss, K., and Herrmann, W. R., 1975, Automatische Boldverarbeitung in Medizin und Biologie, p. 155, Theodor Steinkopff Verlag, Dresden.Google Scholar
  81. Stobo, J. D. and Paul, W. E., 1973, Functional heterogeneity of murine lymphoid cells. III. Differential responsiveness of T cells to phytohemagglutinin and concanvalin A as a probe for T cell subsets, J. Immunol. 110: 362.PubMedGoogle Scholar
  82. Sychra, J. J., Bartels, P. H., Taylor, J., Bibbo, M., and Wied, G. L., 1976, Cytoplasmic and nuclear shape analysis for computerized cell recognition, Acta Cytol. 20: 68.PubMedGoogle Scholar
  83. Sychra, J., Bartels, P. H., Bibbo, M., Taylor, J., and Wied, G. L., 1977, Computer recognition of abnormal ectocervical cells. Comparison of efficacy of contour and textural features, Acta Cytol. 21: 765.PubMedGoogle Scholar
  84. Taylor, J., Bartels, P. H. Bibbo, M., Bahr, G. F., and Wied, G. L., 1974, Implementation of a hierarchical cell classification procedure, Acta Cytol. 18: 515.PubMedGoogle Scholar
  85. Taylor, J., Bartels, P. H., Bibbo, M., and Wied, G. L., 1978a, Automated hierarchic decision structures for multiple cell classification by TicAS, Acta Cytol. 22: 261.PubMedGoogle Scholar
  86. Taylor, J., Puls, J., Sychra, J., Bartels, P. H., Bibbo, M., and Wied, G. L., 1978b, A system for scanning biological cells in three colors, Acta Cytol. 22: 29.PubMedGoogle Scholar
  87. Vastola, E. F., Hertzberg, R., Neurath, P., and Brenner, J., 1974, A description by computer of texture in Wright stained leukocytes, Acta Cytol. 18: 231.PubMedGoogle Scholar
  88. Wasmund, H., 1976, Computergesteuertes Scanning Mikroskop fuer die Analyse von Einzelzellen, Leitz-Mitt. Wiss. Tech. 6: 217.Google Scholar
  89. Wied, G. L., Bartels, P. H., Bahr, G. F., and Oldfield, D. G., 1968, Taxonomic intracellular analytic system (TtcAs) for cell identification, Acta Cytol. 12: 177.Google Scholar
  90. Wied, G. L., Bahr, G. F., and Bartels, P. H., 1970a, Automatic analysis of cell images by TICAS, in Automated Cell Identification and Cell Sorting ( G. L. Wied and G. F. Bahr, eds.), p. 195, Academic Press, New York.Google Scholar
  91. Wied, G. L., Bibbo, M., Bahr, G. F., and Bartels, P. H., 1970b, Computerized recognition of uterine glandular cells. III. Assessment of the efficacy of 1 µ vs 1/2 µ measuring spot size, Acta Cytol. 14: 136.Google Scholar
  92. Wied, G. L., Bibbo, M., Bahr, G. F., and Bartels, P. H., 1970c, Computerized microdissection of cellular images, Acta Cytol. 14: 418.PubMedGoogle Scholar
  93. Wied, G. L., Bahr, G. F., and Bartels, P. H. (eds.) 1976, The Automation of Uterine Cancer Cytology, Tutorials of Cytology, Chicago.Google Scholar
  94. Wied, G. L., Bartels, P. H., Bibbo, M., Chen, M., Reale, F. R., Schreiber, H., and Sychra, J. J., 1979, Discriminant analysis on cells from developing squamous cancer of the respiratory tract, Cell Biophysics 1: 39.PubMedGoogle Scholar
  95. Young, I. T., 1969, Automated leukocyte recognition, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts.Google Scholar
  96. Young, I. T., Walker, J. E., and Bowie, J. E., 1974, An analysis technique for biological shape. I, Inf. Control 25: 357.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Peter H. Bartels
    • 1
  • George B. Olson
    • 2
  1. 1.Optical Sciences CenterThe University of ArizonaUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of ArizonaTucsonUSA

Personalised recommendations