Immobilization and Skeletal Muscles

  • Franz U. Steinberg
Part of the Topics in Bone and Mineral Disorders book series (TBMD)


Skeletal muscle and immobilization are linked in a dual causal relationship. Muscle paralysis is an obvious cause of immobilization. On the other hand, when muscles are immobilized by extraneous forces they undergo changes which may permanently affect their structure and function.


Skeletal Muscle Motor Unit Leverage Action Functional Electrical Stimulation Mechanical Advantage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Walton, J. N. Disorders of Voluntary Muscle. 3rd Ed., Chapter 1. Edinburgh and London, 1974. Churchill Livingstone.Google Scholar
  2. 2.
    Armstrong, R. B. Energy release in the extrafusal muscle fiber. Neuromuscular Mechanism for Therapeutic and Conditioning Exercise (H. G. Knuttgen, ed.). Baltimore, 1976. University Park Press.Google Scholar
  3. 3.
    Ianuzzo, C. D. The cellular composition of human skeletal muscle. In: Neuromuscular Mechanism for Therapeutic and Conditioning Excercise H. G. Knuttgen, ed.). Baltimore 1976. University Park Press.Google Scholar
  4. 4.
    Riley, D. A., and Allin, E. F. The effects of inactivity, programmed stimulation, and denervation on the histochemistry of skeletal muscle fiber types. Exp. Neurol. 40:391, 1973.PubMedCrossRefGoogle Scholar
  5. 5.
    Brunnstrom, S. Clinical Kinesiology, Chapter 2. Philadelphia, 1962. F. A. Davis Co.Google Scholar
  6. 6.
    Thistle, H. G., Hislop, H. J., Moffroid, M., and Lowman, E. W. Isokinetic contraction: New concept of resistive exercise. Arch. Phys. Med. Rehab. 48:279, 1967.Google Scholar
  7. 7.
    Duchenne, G. B. Physiology of Motion (1867). Translated by E. B. Kaplan. Philadelphia, 1949. J. B. Lippincott Co.Google Scholar
  8. 8.
    Close, J. R. Motor Function in the Lower Extremities. 2nd Ed. Springfield, Illinois, 1973. Charles C Thomas.Google Scholar
  9. 9.
    Basmajan, J. V. Muscles Alive. 4th Ed. Baltimore, 1978. Williams & Wilkins.Google Scholar
  10. 10.
    Kendall, H. O., Kendall, F. P., and Wadsworth, G. E. Muscle Testing and Function. 2nd Ed. Baltimore, 1971. Williams & Wilkins.Google Scholar
  11. 11.
    Daniels, L., and Worthingham, C. Muscle Testing. 3rd Ed. Philadelphia, 1972. W. B. Saunders.Google Scholar
  12. 12.
    Nathan, P. W. Intrathecal phenol to relieve spasticity in paraplegia. Lancet 2:1099, 1959.PubMedCrossRefGoogle Scholar
  13. 13.
    Mayer, R. F., Burke, R. E., and Kanda, K. Immobilization and muscle atrophy. Trans. Am. Neurol. Assoc. 101:145, 1976.PubMedGoogle Scholar
  14. 14.
    Engel, K. A critique of congenital myopathies and other disorders. In: Exploratory Concepts of Muscular Disorders. Amsterdam, 1966. Excerpta Medica Foundation.Google Scholar
  15. 15.
    Edström, L., and Kugelberg, E. Histochemical composition, distribution of fibers and fatigability of single motor units. J. Neurol. Neurosurg. Psychiatry 31:424, 1968.PubMedCrossRefGoogle Scholar
  16. 16.
    Cardenas, D. D., Stolov, W. C., and Hardy, R. Muscle fiber numbers in immobilization atrophy. Arch. Phys. Med. Rehab. 58:423, 1977.Google Scholar
  17. 17.
    Järvinen, M. Immobilization effect on the tensile properties of striated muscle: An experimental study in the rat. Arch. Phys. Med. Rehab. 58:123, 1977.Google Scholar
  18. 18.
    Goldspink, D. F. The influence of immobilization and stretch on protein turnover of rat skeletal muscle. J. Physiol. 264:267, 1977.PubMedGoogle Scholar
  19. 19.
    Müller, E. A. Influence of training and of inactivity on muscle strength. Arch. Phys. Med. Rehab. 51:449, 1970.Google Scholar
  20. 20.
    DeLorme, T. L., and Watkins, A. L. Technics of progressive resistance exercise. Arch. Phys. Med. Rehab. 29:263, 1948.Google Scholar
  21. 21.
    Rose, D. L., Radzyminski, S. F., and Beatty, R. R. Effect of brief maximal exercise on the strength of the quadriceps femoris. Arch. Phys. Med. Rehab. 38:157, 1957.Google Scholar
  22. 22.
    Müller, E. A., and Beckmann, H. Die Trainierbarkeit von Kindern mit gelähmten Muskeln durch isometrische Kontraktionen. Z. Orthop. 102:139, 1966.PubMedGoogle Scholar
  23. 23.
    Bennett, R. L., and Knowlton, G. C. Overwork weakness in partially denervated skeletal muscles. Clin. Orthop. 12:22, 1958.PubMedGoogle Scholar
  24. 24.
    Sherrington, C. S. Observation on the scratch reflex in the spinal dog. J. Physiol. 34:1, 1906.PubMedGoogle Scholar
  25. 25.
    Vignos, P. J., Spencer, G. E., and Archibald, K. C. Management of progressive muscular dystrophy of childhood. J. Am. Med. Assoc. 184:89, 1963.CrossRefGoogle Scholar
  26. 26.
    Hussey, R. W. and Stauffer, E. S. Spinal cord injury. Requirements for ambulation. Arch. Phys. Med. Rehab. 54:544, 1973.Google Scholar
  27. 27.
    Licht, S. Orthotics. New Haven, 1966. Elizabeth Licht.Google Scholar
  28. 28.
    Atlas of Orthotics. American Academy of Orthopedic Surgeons. St. Louis, 1975. C. V. Mosby.Google Scholar
  29. 29.
    Liberson, W. T., Holmquest, H. J., Scot, D., and Dow, M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehab. 42:101, 1961.Google Scholar
  30. 30.
    Waters, R. Electrical stimulation of the peroneal and femoral nerves in man. In: Functional Electrical Stimulation. Applications in Neural Prostheses. Biomedical Engineering and Instrumentation, Vol. 3 (F. T. Hambrecht and J. B. Reswick eds.). New York and Basel, 1977. Marcel Dekker.Google Scholar
  31. 31.
    Mortimer, J. T., and Peckham, P. H. Intramuscular electrical stimulation. In: Neural Organization and Its Relevance to Prosthetics (W. S. Fields and L. A. Leavitt, eds). New York, 1973. Intercontinental Medical Book Corpz.Google Scholar
  32. 32.
    Peckham, P. H., and Mortimer, J. T. Restoration of hand function in the quadriplegic through electrical stimulation. In: Functional Electrical Stimulation. Applications in Neural Prostheses. Biomedical Engineering and Instrumentation, Vol. 3 (F. T. Hambrecht and J. B. Reswick, eds.). New York and Basel, 1977. Marcel Dekker.Google Scholar
  33. 33.
    Peckham, P. H., Mortimer, J. T., and Van Der Meulen, J. P. Physiologic and metabolic changes in white muscle of cat following induced exercise. Brain Res. 50:424, 1973.PubMedCrossRefGoogle Scholar
  34. 34.
    Pette, D., Ramirez, B. U., Müller, W., Simon, R., Exner, G. U., and Hildebrand, R. Influence of intermittent long-term stimulation on contractile, histochemical and metabolic properties of fibre populations in fast and slow rabbit muscles. Pfluegers Arch. Eur. J. Physiol. 361:1, 1975.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Franz U. Steinberg
    • 1
    • 2
  1. 1.Washington University School of MedicineUSA
  2. 2.The Jewish Hospital of St. LouisUSA

Personalised recommendations