Advertisement

The Effects of Immobilization on Bone

  • Franz U. Steinberg
Part of the Topics in Bone and Mineral Disorders book series (TBMD)

Abstract

Accretion and resorption of the skeletal mass, especially of the lower part of the body, are maintained in equilibrium by the stimulus of weight bearing and activity. Immobilization, whether by prolonged recumbency, paralysis, or space-flight immobilization, leads to bone atrophy. Calcium released by the immobilized skeleton is excreted in the urine with resulting hypercalciuia ultimately reflecting the extent of bone loss. The excessive elimination of calcium salts in the urine also predisposes to nephrocalcinosis and nephrolithiasis, the latter representing a frequent complication of spinal-cord lesions. The deposition of calcium salts in soft tissues is another sequela of loss of calcium from the skeletal mass.

Keywords

Bone Formation Bone Mass Urinary Calcium Excretion Calcium Balance Calcium Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Von Volkmann, R. Handbuch der allgemeinen und speziellen Chirurgie, p. 282, 1882.Google Scholar
  2. 2.
    Legg, A. The cause of atrophy in joint disease. Am. J. Orthop. Surg. 6:84, 1908.Google Scholar
  3. 3.
    Willert, H. G. Immobilisationsosteoporose. Langenbecks. Arch. Klin. Chir. 315:258, 1966.Google Scholar
  4. 4.
    Jenkins, D. P. and Cochran, T. H. The dramatic effect of disuse of an extremity. Clin. Orthop. 64:128, 1969.PubMedGoogle Scholar
  5. 5.
    Haike, H. J., Heymann, P., and Wagner, K. Experimentelle Untersuchungen ueber den Einfluss der Immobilisation auf die Knochenfestigkeit und Knochenelastizitaet sowie ueber die Regenerationsfaehig-keit derselben bei der Remobilisation. Z. Orthop. 102:200, 1966-1967.PubMedGoogle Scholar
  6. 6.
    Whedon, G. D. Osteoporosis: Atrophy of disuse. In: Bone as a Tissue (K. Rodahl, ed.). New York, 1960. McGraw-Hill Co.Google Scholar
  7. 7.
    Geiser, M., and Trueta, J. Muscle action, bone Tarification and bone formation. J. Bone Jt. Surg. 40B:282, 1958.Google Scholar
  8. 8.
    Hulth, A., and Olerud, S. Disease of extremities. II. A microangiographic study in the rabbit, Acta Chir. Scand. 120:388, 1961.PubMedGoogle Scholar
  9. 9.
    Sundén, G. Some aspects of longitudinal bone growth. An experimental study in the rabbit. Acta Orthop. Scand., Suppl. 103, 1967.Google Scholar
  10. 10.
    Hardt, A. B. Early metabolic responses of bone to immobilization. J. Bone Jt. Surg. 54A:119, 1972.Google Scholar
  11. 11.
    Little, K., and De Valderrama, J. F. Some mechanisms involved in the osteoporotic process. Gerontologia 14:109, 1968.CrossRefGoogle Scholar
  12. 12.
    Trueta, J. Der Einfluss des Muskels auf den Blutstrom in den langen Roehrenknochen. Z. Orthop. 99:11, 1964/1965.PubMedGoogle Scholar
  13. 13.
    De Valderrama, J. F., and Trueta, J. The effect of muscle action on the intraosseous circulation. J. Pathol. Bacteriol. 89:179, 1965.CrossRefGoogle Scholar
  14. 14.
    Harris, W. H., and Heaney, R. P. Skeletal renewal and metabolic bone disease. N. Engl J. Med. 280:193, 253, 303, 1969.PubMedCrossRefGoogle Scholar
  15. 15.
    Doyle, F., Brown, J., and LaChance, C. Lancet 1:391, 1970.PubMedCrossRefGoogle Scholar
  16. 16.
    Landry, M., and Fleisch, H. The influence of immobilization on bone formation as evaluated by osseous incorporation of tetracyclines. J. Bone Jt. Surg. 46B.764, 1964.Google Scholar
  17. 17.
    Pennock, J. M., Kalu, D. N., Clark, M. B., Foster, G. V., and Doyle, F. H. Hypoplasia of bone induced by immobilization. Br. J. Radiol. 45:641, 1972.PubMedCrossRefGoogle Scholar
  18. 18.
    Mattson, S. The reversibility of disuse osteoporosis. Acta Orthop. Scand., Suppl. 144, 1972.Google Scholar
  19. 19.
    Uhthoff, H. K. and Jaworski, Z. F. G. Bone loss in response to longterm immobilization. J. Bone Jt. Surg. 60B:420, 1978.Google Scholar
  20. 20.
    Burkhart, J. M., and Jowsey, J. Parathyroid and thyroid hormones in the development of disuse osteoporosis. Endocrinology 81:1053, 1967.PubMedCrossRefGoogle Scholar
  21. 21.
    Heaney, R. P. Radiocalcium metabolism in disuse osteoporosis in man. Am. J. Med. 33:188, 1962.PubMedCrossRefGoogle Scholar
  22. 22.
    Minaire, P., Meunier, P., Edouard, C., Bernard, J., Courpron, P., and Bourret, J. Quantitative histological data on disuse osteoporosis. Calcif. Tissue Res. 17:57, 1974.PubMedCrossRefGoogle Scholar
  23. 23.
    Nilsson, E. R. Post-traumatic osteopenia. Acta Orthop. Scand., Suppl. 91, 1966.Google Scholar
  24. 24.
    Hodkinson, H. M., and Brain, A. T. Unilateral osteoporosis in longstanding hemiplegia in the elderly. J. Am. Geriatr. Soc. 15:59, 1967.PubMedGoogle Scholar
  25. 25.
    Panin, N., Gorday, W. J., and Paul, B. J. Osteoporosis in hemiplegia. Stroke 2:41, 1971.PubMedCrossRefGoogle Scholar
  26. 26.
    Naftchi, N. E., Viau, A., Marshall, C. H., Davis, W. S., and Lowman, E. W. Bone mineralization in the distal forearm of hemiplegic patients. Arch. Phys. Med. Rehab. 56:487, 1975.Google Scholar
  27. 27.
    Albright, F., Burnett, C. H., Cope, O., and Parson, W. Acute atrophy of bone (osteoporosis) simulating hyperparathyroidism. J. Clin. Endocrinol. 1:711, 1941.CrossRefGoogle Scholar
  28. 28.
    Howard, J. E., Parson, W., and Bigham, R. S., Jr. Studies on patients convalescent from fracture. III. The urinary excretion of calcium and phosphorus. Bull. Johns Hopkins Hosp. 77:291, 1945.PubMedGoogle Scholar
  29. 29.
    Deitrick, J. E., Whedon, G. D., and Shorr, E. Effects of immobilization upon various metabolic and physiologic functions of normal men. Am. J. Med. 4:3, 1948.PubMedCrossRefGoogle Scholar
  30. 30.
    Goldsmith, R. S., Killian, P., Ingbar, S. H., and Bass, D. E. Effect of phosphate supplementation during immobilization of normal men. Metabolism 18:349, 1969.PubMedCrossRefGoogle Scholar
  31. 31.
    Donaldson, C. L., Hulley, S. B., Vogel, J. M., Hattner, R. S., Bayers, J. H., and McMillan, D. E. Effect of prolonged bedrest on bone mineral. Metabolism 19:1071, 1970.PubMedCrossRefGoogle Scholar
  32. 32.
    Whedon, G. D., Shorr, E., Toscani, V., and Stevens, E. Metabolic studies in paralytic anterior poliomyelitis. II. Alteration in calcium and phosphorus metabolism. J. Clin. Invest. 36:966, 1957.PubMedCrossRefGoogle Scholar
  33. 33.
    Rose, G. A. Immobilization osteoporosis. Study of the extent, severity, and treatment with bendrofluazide. Br. J. Surg. 53:769, 1966.PubMedCrossRefGoogle Scholar
  34. 34.
    Millard, F. J. C., Nassim, J. R., and Woollen, J. W. Urinary calcium excretion after immobilization and spinal fusion in adolescents. Arch. Dis. Child. 45:399, 1970.PubMedCrossRefGoogle Scholar
  35. 35.
    Chantraine, A. Clinical investigation of bone metabolism in spinal cord lesions. Paraplegia 8:253, 1970/1971.CrossRefGoogle Scholar
  36. 36.
    Claus-Walker, J., Spencer, W. A., Carter, R. E., Halstead, L. S., Meier, R. H. III, and Campos, R. J. Bone metabolism in quadriplegia: Dissociation between calciuria and hydroxyprolinuria. Arch. Phys. Med. Rehab. 56:327, 1975.Google Scholar
  37. 37.
    Klein, L., Van Den Noort, S., and DeJak, J. J. Sequential studies of urinary hydroxyproline and serum alkaline phosphatase in acute paraplegia. Med. Serv. J. Can. 22:524, 1966.PubMedGoogle Scholar
  38. 38.
    Mack, P. B., and La Chance, P. L. Effects of recumbency and space flight on bone density. Am. J. Clin. Nutr. 20:1194, 1967.PubMedGoogle Scholar
  39. 39.
    Griffiths, H. J., Bushueff, B., and Zimmerman, R. E. Investigation of the loss of bone mineral in patients with spinal cord injury. Paraplegia 14:207, 1976.PubMedCrossRefGoogle Scholar
  40. 40.
    Nikolic, V., Vladovic, P., Sajko, D., Zimmermann, B., Hudec, M., Vladovic, A., Hancevic, J., and Mijatovic, Z. Bone mass and safety factor of bone strength in lower extremities of patients with paraplegia. Calcif. Tissue Res. 22:(Suppl) 303, 1977.PubMedCrossRefGoogle Scholar
  41. 41.
    Hyman, L. R., Boner, G., Thomas, J. C., and Segar, W. E., Immobilization hypercalcemia. Am. J. Dis. Child. 124:723, 1972.PubMedGoogle Scholar
  42. 42.
    Lawrence, G. D., Loeffler, R. G., Martin, L. G., and Connor, T. B. Immobilization hypercalcemia. J. Bone Jt. Surg. 55A:87, 1973.Google Scholar
  43. 43.
    Wolf, A. W., Chuinard, R. G., Riggins, R. S., Walter, R. M., and Depner, T. Immobilization hypercalcemia. Clin. Orthop. 118:124,1976.PubMedGoogle Scholar
  44. 44.
    Claus-Walker, J., Carter, R. E., Campos, R. J., and Spencer, W. A. Hypercalcemia in early traumatic quadriplegia. J. Chron. Dis. 28:81, 1975.PubMedCrossRefGoogle Scholar
  45. 45.
    Rosen, J. F., Wolin, D. A., and Finberg, L. Immobilization hypercalcemia after single limb fracture in children and adolescents. Am. J. Dis. Child. 132:560, 1978.PubMedGoogle Scholar
  46. 46.
    Steinberg, F. U., Birge, S. J., and Cooke, N. E. Hypercalcemia in adolescent tetraplegic patients: Case report and review. Paraplegia 16:60, 1978.PubMedCrossRefGoogle Scholar
  47. 47.
    Heath, H., III, Earll, J. M., Schaaf, M., Piechocki, J. T., and Ting-Kai Li. Serum ionized calcium during bedrest in fracture patients and normal men. Metabolism 21:633, 1972.PubMedCrossRefGoogle Scholar
  48. 48.
    Maynard, F. M., and Imai, K. Immobilization hypercalcemia in spinal cord injury. Arch. Phys. Med. Rehab. 58:16, 1977.Google Scholar
  49. 49.
    Whedon, G. D., Deitrick, J. E., and Shorr, E. Modification of the effect of immobilization upon metabolic and physiologic functions of normal men by the use of an oscillating bed. Am. J. Med. 6:684, 1949.PubMedCrossRefGoogle Scholar
  50. 50.
    Issekutz, B. Jr., Blizzard, J. J., Birkhead, N. C., and Rodahl, K. Effect of prolonged bed rest on urinary calcium output. J. Appl. Physiol. 21:1013, 1966.PubMedGoogle Scholar
  51. 51.
    Hantman, D. A., Vogel, J. M., Donaldson, C. L., Friedman, R., Goldsmith, R. S., and Hulley, S. B. Attempts to prevent disuse osteoporosis by treatment with calcitonin, longitudinal compression and supplementary calcium and phosphate. J. Clin. Endocrinol. Metab. 36:845, 1973.PubMedCrossRefGoogle Scholar
  52. 52.
    Hulley, S. B., Vogel, J. M., Donaldson, C. L., Bayers, J. H., Friedman, R. J., and Rosen, S. N. The effect of supplemental oral phosphate on the bone mineral changes during prolonged bed rest. J. Clin. Invest. 50:2506, 1971.PubMedCrossRefGoogle Scholar
  53. 53.
    Abramson, A. S. Bone disturbances in injuries to the spinal cord and cauda equina (paraplegia). Their prevention by ambulation. J. Bone Jt. Surg. 30A:982, 1948.Google Scholar
  54. 54.
    Abramson, A. S. and Delagi, E. F. Influence of weight-bearing and muscle contraction on disuse osteoporosis. Arch. Phys. Med. Rehab. 42:147, 1961.Google Scholar
  55. 55.
    Wyse, D. M., and Pattee, C. J. Effect of the oscillating bed and tilt table on calcium, phosphorus and nitrogen metabolism in paraplegia. Am. J. Med. 17:645, 1954.PubMedCrossRefGoogle Scholar
  56. 56.
    Plum, F., and Dunning, M. F. The effect of therapeutic mobilization on hypercalcuria following acute poliomyelitis. Arch. Int. Med. 101:528, 1958.CrossRefGoogle Scholar
  57. 57.
    Claus-Walker, J., Campos, R. J., Carter, R. E., Vallbona, C., and Lipscomb, H. S. Calcium excretion in quadriplegia. Arch. Phys. Med. Rehab. 53:14, 1972.Google Scholar
  58. 58.
    Griffith, D. P. Immobilization hypercalciuria: Treatment and possible pathophysiologic mechanism. Aerosp. Med. 42:1322, 1971.PubMedGoogle Scholar
  59. 59.
    Wynston, L. K., and Perkins, D. L. Effectiveness of thyrocalcitonin in maintaining bone strength in vivo under decalcifying conditions. Aerosp. Med. 39:966, 1968.PubMedGoogle Scholar
  60. 60.
    Chiroff, R. T., and Jowsey, J. The effect of calcitonin on immobilization osteopenia. J. Bone Jt. Surg. 52A:1138, 1970.Google Scholar
  61. 61.
    Braddom, R. L., Erickson, R., and Johnson, E. W. Ineffectiveness of calcitonin on osteoporosis in paraplegic rats. Arch. Phys. Med. Rehab. 54:170, 1973.Google Scholar
  62. 62.
    Lockwood, D. R., Vogel, J. M., Schneider, V. S., and Hulley, S. B. Effect of the diphosphanate EHDP on bone mineral metabolism during prolonged bedrest. J. Clin. Endocrinol. Metab. 41:533, 1975.PubMedCrossRefGoogle Scholar
  63. 63.
    King, W. R., Francis, M. D., and Michael, W. R. Effect of Disodium ethane-l-hydroxy-l-diphosphanate on bone formation. Clin. Orthop. 78:251, 1971.PubMedCrossRefGoogle Scholar
  64. 64.
    Canfield, R., Rosner, W., Skinner, J., McWorther, J., Resnick, F., Feldman, F., Kammerman, S., Ryan, K., Kunigonis, M., and Bohne, W. Diphosphonate therapy of Paget’s disease of bone. J. Clin. Endocrinol. Metab. 44:96, 1977.PubMedCrossRefGoogle Scholar
  65. 65.
    Whedon, G. D., and Shorr, E. Metabolic studies in paralytic acute anterior poliomyelitis. IV. Effects of testosterone proprionate and estradiol benzoate on calcium, phosphorus, nitrogen and creatine metabolism, J. Clin. Invest. 36:995, 1957.PubMedCrossRefGoogle Scholar
  66. 66.
    Plum, F., and Dunning, M. F. Amelioration of hypercalcuria following poliomyelitis by 17-ethyl-19-nortesterone (Nilevar). J. Clin. Endocrinol. 18:860, 1958.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1980

Authors and Affiliations

  • Franz U. Steinberg
    • 1
    • 2
  1. 1.Washington University School of MedicineUSA
  2. 2.The Jewish Hospital of St. LouisUSA

Personalised recommendations