The generation of electronically excited states in biological processes not readily classifiable as bioluminescent has been under consideration for a long time (Szent-Györgyi, 1941; Anderson, 1947; Steele, 1963; Cilento, 1965, 1973; Förster, 1967; White and Wei, 1970; White et al., 1970, 1971, 1974). Clearly, if the cell were endowed with the potential of photochemistry in the absence of light, it would have at hand an extremely useful, although potentially detrimental, tool. One may suspect that nonemissive energy may also be generated, or possibly triggered and subsequently transferred. It is inherently difficult to believe that electronic energy should be generated in vivo exclusively for emission purposes.


Excited State Energy Transfer Triplet State Singlet Oxygen Rose Bengal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam, W., 1977, The chemistry of 1,2-dioxetanes, Advances in Heterocyclic Chem. 21:437–481.Google Scholar
  2. Akazawa, T., and Conn, E. E., 1958, The oxidation of reduced pyridine nucleotides by peroxidase, J. Biol. Chem. 232:403–415.Google Scholar
  3. Allen, R. C., 1979, Chemiluminescence from eukaryotic and prokaryotic cells: reducing potential and oxygen requirements, Photochem. Photobiol., 30:157–163.Google Scholar
  4. Anderson, B. R., Lint, T. F., and Brendzel, A. M., 1978, Chemically shifted singlet oxygen spectrum, Biochim. Biophys. Acta 542:527–536.Google Scholar
  5. Anderson, W., 1947, Physico-chemical aspects of chemical carcinogens, Nature 168:892–895.Google Scholar
  6. Augusto, O., and Cilento, G., 1977, Conversion of tryptophan to indoleacetamide. Evidence for an electronically excited intermediate, Biochem. Biophys. Res. Commun. 79:1238–1244.Google Scholar
  7. Augusto, O., and Cilento, G., 1979, Dark excitation, of chlorophyll, Photochem. Photobiol., 30:191–193.Google Scholar
  8. Augusto, O., Cilento, G., Jung, J., and Song, P. S., 1978, Phototransformation of phytochrome in the dark, Biochem. Biophys. Res. Commun. 83:963–969.Google Scholar
  9. Bechara, E. J. H., Baumstark, A. L., and Wilson, T., 1976, Tetraethyldioxetane and 3,4-dimethyl-3,4-di-n-butyl-l,2-dioxetane. High ratio of triplet to singlet excited products from the thermolysis of both dioxetanes, J. Am. Chem. Soc. 98:4648–4649.Google Scholar
  10. Bechara, E. J. H., Faria Oliveira, O. M. M., Duran, N., Casadei de Baptista, R., and Cilento, G., 1979, Peroxidase catalyzed generation of triplet acetone, Photochem. Photobiol., 30:101–110.Google Scholar
  11. Bednar, T. W., Linsmaier-Bednar, E. M., and King, C. M., 1976, Peroxidase-H2O2 catalyzed incorporation of auxin derivatives into sRNA, Biochem. Biophys. Res. Commun. 72:761–767.Google Scholar
  12. Belyakov, V. A., and Vassil’ev, R. F., 1970, Chemiluminescence in hydrocarbon oxidation in solution. A quantitative study of the excitation and emission steps, Photochem. Photobiol. 11:179–192.Google Scholar
  13. Chandross, E. A., and Sonntag, F. I., 1966, Chemiluminescent electron transfer reactions of radical anions.J. Am. Chem. Soc. 88:1089–1096.Google Scholar
  14. Chen, N. C., Gholson, R. K., and Raica, N., 1974, Isolation and identification of indole-3-carboxaldehyde: A major new urinary metabolite of D-tryptophan, Biochim. Biophys. Acta 343:167–172.Google Scholar
  15. Cilento, G., 1961, Heavy atom perturbation and the mechanism of action of thyroxine, in: Intern. Biophys. Congr. Stockholm Abstr., pp. 89.Google Scholar
  16. Cilento, G., 1965, On the possibility of generation and transfer of electronic energy in biochemical systems, Photochem. Photobiol. 4:1243–1247.Google Scholar
  17. Cilento, G., 1973, Excited electronic states in dark biological processes, Quart. Rev. Biophys. 6:485–501.Google Scholar
  18. Cilento, G., 1975a, In defense of a special role for the iodo substituents in thyroid hormones, J. Theor. Biol. 52:255–257.Google Scholar
  19. Cilento, G., 1975b, Dioxetanes as intermediates in biological processes, J. Theor. Biol. 55:471–479.Google Scholar
  20. Cilento, G., and Berenholc, M., 1964, Singlet-triplet absorption in 3,5-diiodotyrosine, Biochim. Biophys. Acta 79:625–626.Google Scholar
  21. Cilento, G., and Berenholc, M., 1965, Heavy-atom perturbation, molecular complexing and activity of thyroxine, Biochim. Biophys. Acta 94:271–279.Google Scholar
  22. Cilento, G., Azagarra, I., and Smith, F. J., 1965, Emission from 3,5-diiodotyrosine, Biochim. Biophys. Acta 102:621–623.Google Scholar
  23. Cilento, G., Nakano, M., Fukuyama, H., Suwa, K., and Kamiya, T., 1974, Chem-iluminescence in the autoxidation of the pyruvic acid analogues of a thyroid hormone and related molecules, Biochem. Biophys. Res. Commun. 58:296–300.Google Scholar
  24. Cilento, G., Durán, N., Zinner, K., Vidigal, C. C. C., Faria Oliveira, O. M. M., Haun, M., Faljoni, A., Augusto, O., Casadei de Baptista, R., and Bechara, E. J. H., 1978, Chemienergized species in peroxidase systems, Photochem. Photobiol. 28:445–451.Google Scholar
  25. Cook, D. A., and Henderson, L. M., 1969, The formation of oxalic acid from the side chain of aromatic amino acids in the rat, Biochim. Biophys. Acta 184:404–411.Google Scholar
  26. Danpure, H. J., and Tyrrel, R. M., 1976, Oxygen-dependence of near UV (365 nm) lethality and the interaction of near UV and X-rays in two mammalian cell lines, Photochem. Photobiol. 23:171–177.Google Scholar
  27. Durán, N., Zinner, K., Casadei de Baptista, R., Vidigal, C. C. C., and Cilento, G., 1976, Chemiluminescence from the oxidation of auxin derivatives, Photochem. Photobiol. 24:383–388.Google Scholar
  28. Durán, N., Zinner, K., Vidigal, C. C. C., and Cilento, G., 1977a, Generation of electronically excited aromatic aldehydes in the peroxidase-catalyzed aerobic oxidation of aromatic acetaldehydes, Biochem. Biophys. Res. Commun. 74:1146–1153.Google Scholar
  29. Durán, N., Faria Oliveira, O. M. M., Haun, M., and Cilento, G., 1977b, Enzymically generated triplet acetone, J. C. S. Chem. Commun. 13:442–443.Google Scholar
  30. Durán, N., Haun, M., Faljoni, A., and Cilento, G., 1978, Photochemical oxidation of chlor-promazine in the dark induced by enzymically generated triplet carbonyl compounds, Biochem. Biophys. Res. Commun. 81:785–790.Google Scholar
  31. Eftink, M. R., and Ghiron, C. A., 1977, Exposure of triptophanyl residues and protein dynamics, Biochemistry 16:5546–5551.Google Scholar
  32. Erlanger, B. F., 1976, Photoregulation of biologically active macromolecules, Ann. Rev. Biochem. 45:267–283.Google Scholar
  33. Faljoni, A., Haun, M., Hoffmann, M. E., Meneghini, R., and Cilento, G., 1978, Photochemical-like effects in DNA caused by enzymically energized triplet carbonyl compounds, Biochem. Biophys. Res. Commun. 80:490–495.Google Scholar
  34. Faria Oliveira, O. M. M., Haun, M., Durán, N., O’Brien, P. J., O’Brien, C. R., Bechara, E. J. H., and Cilento, G., 1978, Enzyme-generated electronically excited carbonyl compounds, J. Biol. Chem. 253:4707–4712.Google Scholar
  35. Foerder, C. A., Klebanoff, S. J., and Shapiro, B. M., 1978, Hydrogen peroxide production, chemiluminescence, and the respiratory burst of fertilization: Interrelated events in early sea urchin development, Proc. Nat. Acad. Sci. USA 75:3183–3187.Google Scholar
  36. Förster, T. H., 1967, Mechanism of energy transfer, in: Comprehensive Biochemistry (M. Florkin, and E. H. Stotz, eds.), Vol. 22, pp. 61–81, Elsevier, New York.Google Scholar
  37. Freed, D. J., and Faulkner, L. R., 1972, Near unit efficiency of triplet production in an electron-transfer reaction, J.Am. Chem. Soc. 94:4790–4792.Google Scholar
  38. Galliard, T., and Matthew, J. A., 1976, The enzymic formation of long chain aldehydes and alcohols by α-oxidation of fatty acids in extracts of cucumber fruit (Cucumis satious), Biochim. Biophys. Acta 424:26–35.Google Scholar
  39. Galliard, T., and Matthew, J. A., 1977, Lipoxygenase-mediated cleavage of fatty acids to carbonyl fragments in tomato fruits, Phytochemistry 16:339–343.Google Scholar
  40. Galston, A. W., 1974, Plant photobiology in the last half century, Plant Physiol. 54:427–436.Google Scholar
  41. Hamman, J. P., and Seliger, H. H., 1976, The chemical formation of excited states during hydroxylation of the carcinogenic hydrocarbon benzo/α/pyrene by liver microsomes, Biochem. Biophys. Res. Commun. 70:675–680.Google Scholar
  42. Hamman, J. P., Gorby, D. R., and Seliger, H. H., 1977, A new type of biological chemiluminescence: The microsomal chemiluminescence of benzo(a)pyrene arises from the diol epoxide product of the 7,8-dihidrodiol, Biochem. Biophys. Res. Commun. 75:793–798;Google Scholar
  43. Harrison, J. E., Watson, B. D., and Schultz, J., 1978, Myeloperoxidase and singlet oxygen: a reappraisal, FEBS Lett. 92:327–332.Google Scholar
  44. Hatanaka, A., Kajiwara, T., Sekiya, J., and Kido, Y., 1977, Formation of 12-oxo-trans-10-dodecenoic acid in chloroplasts from Thea sinensis leaves, Phytochemistry 16:1828–1829.Google Scholar
  45. Haun, M., Durán, N., and Cilento, G., 1978, Energy transfer from enzymically generated triplet carbonyl compounds to the fluorescent state of flavins, Biochem. Biophys. Res. Commun. 81:779–784.Google Scholar
  46. Hayaishi, O., 1969, Enzymic hydroxylation, Ann. Rev. Biochem. 38:21–44.Google Scholar
  47. Henry, J. P., and Michelson, A. M., 1977, Light emissions involving the superoxide anion, in: Biochemical and Medical Aspects of Active Oxygen (O. Hayaishi, and K. Asada, eds.), pp. 135–151, University Park Press, Tokyo.Google Scholar
  48. Hercules, D. M., 1969, Chemiluminescence from electron transfer reaction, Acc. Chem. Res. 2:301–307.Google Scholar
  49. Horn, K. A., Koo, J.-Y., Schmidt, S. P., and Schuster, G. B., 1978–1979, Chemistry of the 1,2-dioxetane ring system. Chemiluminescence, fragmentations, and catalyzed rearrangements, Mol. Photochem. 9:1–37.Google Scholar
  50. Horng, A. J., and Yang, S. F., 1973, Peroxidase-catalyzed oxidation of indole-3-acetaldehyde to 4-hydroxyquinoline in the presence of bisulfite ion: elimination of pyrrole ring C2 as formic acid, Biochim. Biophys. Acta 321:456–460.Google Scholar
  51. Howard, J. A., and Ingold, K. U., 1968, The self-reaction of sec-butyl peroxy radicals. Confirmation of the Russel mechanism, J.Am. Chem. Soc. 90:1056–1058.Google Scholar
  52. Howes, R. M., and Steele, R. H., 1971, Microsomal (μS) chemiluminescence (CL) induced by NADPH and its relation to lipid peroxidation, Res. Commun. Chem. Pathol. Pharmacol. 2:619–626.Google Scholar
  53. Hug, D. H., 1977, The activation of enzymes with light, Photochem. Photobiol. Rev. 3:1–33.Google Scholar
  54. Ishikawa, H., Schubert, W. J., and Nord, F. F., 1963, Investigations on lignins and lignification. XXX. Enzymic degradation of guaiacylglycerol and related compounds by white-rot fungi, Biochem. Z. 338:153–163.Google Scholar
  55. Iwaoka, T., and Kondo, M., 1974, Mechanistic studies on the photooxidation of chlorpromazine in water and ethanol, Bull. Chem. Soc. Japan 47:980–986.Google Scholar
  56. Jefford, C. W., Knöpfel, W., and Cadby, P. A., 1978, Oxygenation of methyl p-metoxyphenylpyruvate, α-keto-β-peroxylactone and dioxetanol intermediates, Tetrah. Lett. 38:3585–3588.Google Scholar
  57. Kachar, B., Zinner, K., Vidigal, C. C. C., Shimizu, Y., and Cilento, G., 1979, Excitation of eosine when catalyzing electron transport in biochemical systems, Arch. Biochem. Biophys. 195:245–247.Google Scholar
  58. Kasha, M., 1979, Commentary on long-range energy transfer with Z-dependence. Triplet-triplet exciton energy transfer, Photochem. Photobiol. 30:185–186.Google Scholar
  59. Kellogg, R. E., 1969, Mechanism of chemiluminescence from peroxy radicals, J. Am. Chem. Soc. 91:5433–5436.Google Scholar
  60. Kenten, R. H., 1953, The oxidation of phenylacetaldehyde by plant saps, Biochem. J. 55:350–360.Google Scholar
  61. Knox, W. E., and Pitt, B. M., 1957, Enzymic catalysis of the keto-enol tautomerization of phenylpyruvic acids, J.Biol. Chem. 225:675–688.Google Scholar
  62. Koo, J.-Y., and Schuster, G. B., 1977, Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides, J. Am. Chem. Soc. 99:6107–6109.Google Scholar
  63. Koo, J.-Y., and Schuster, G. B., 1978, Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states, J. Am. Chem. Soc. 100:4496–4503.Google Scholar
  64. Kopecky, K. R., and Mumford, C., 1969, Luminescence in the thermal decomposition of 3,3,4-trimethyl-l,2-dioxetane, Can. J. Chem. 47:709–711.Google Scholar
  65. Krinsky, N. I., 1977, Singlet oxygen in biological systems, TIBS’. 2:35–38.Google Scholar
  66. Lamola, A. A., 1971, Production of pyrimidine dimers in DNA in the dark, Biochem. Biophys. Res. Commun. 43:893–898.Google Scholar
  67. Lin, E. C. C., Pitt, B. M., Civen, M., and Knox, W. E., 1958, The assay of aromatic amino acid transaminations and keto-acid oxidation by the enol borate-tautomerase method, J. Biol. Chem. 233:668–673.Google Scholar
  68. Lumry, R., 1978, Status of indole photochemistry with special reference to biological applications, Photochem. Photobiol. 27:819–840.Google Scholar
  69. Martin, R. O., and Stumpf, P. K., 1959, Fat metabolism in higher plants. XII. α-Oxidation of long chain fatty acids, J. Biol. Chem. 234:2548–2554.Google Scholar
  70. Matsuura, T., 1977, Bio-mimetic oxygenation, Tetrahedron 33:2869–2905.Google Scholar
  71. Matsurra, T., and Matsushima, H., 1968, Photoinduced reactions. XXII. Photooxidative cyclization of 3-methoxyflavones, Tetrahedron 24:6615–6618.Google Scholar
  72. McCapra, F., 1973, Chemiluminescence of organic compounds, Prog. Org. Chem. 8:231–277.Google Scholar
  73. McCapra, F., Beheshti, I., Burford, A., Hann, R. A., and Zaklika, K. A., 1977, Singlet excited states from dioxetanes decomposition, J. C. S. Chem. Commun. 24:944–946.Google Scholar
  74. McGlynn, S. P., Smith, F. J., and Cilento, G., 1964, Some aspects of the triplet state, Photochem. Photobiol. 3:269–294.Google Scholar
  75. Meneghini, R., Hoffmann, M. E., Durán, N., Faljoni, A., and Cilento, G., 1978, DNA damage during the peroxidase catalyzed aerobic oxidation of isobutanal, Biochim. Biophys. Acta 518:177–180.Google Scholar
  76. Morton, R. A., and Fahmy, N. I., 1958, Indole-3-aldehyde from tissues, Nature 182:939.Google Scholar
  77. Nakamura, H., and Goto, T., 1979, Studies on aminodioxetanes as a model of bioluminescence intermediates, Photochem. Photobiol. 30:27–33.Google Scholar
  78. Nakano, M., and Sugioka, K., 1977, Mechanism of chemiluminescence from the linoleate-lipoxigenase system, Arch. Biochem. Biophys. 181:371–383.Google Scholar
  79. Nakano, M., and Sugioka, K., 1978, Excitation of indole-3-acetic acid (an auxin) in a linoleate-lipoxygenase system, Biochim. Biophys. Acta 529:387–397.Google Scholar
  80. Neifakh, Y. A., 1971, Free radical mechanism of ultra-weak chemiluminescence coupled with peroxide oxidation of unsaturated fatty acids, Biophysics 16:584–588.Google Scholar
  81. O’Brien, P. J., Bechara, E. J. H., O’Brien, C. R., Durán, N., and Cilento, G., 1978, Generation of bio-electronic energy by electron transfer: reduction of peroxidase compound I and compound II by eosine, Biochem. Biophys. Res. Commun. 81:75–81.Google Scholar
  82. Parker, C. A., and Hatchard, C. G., 1961, Triplet-singlet emission in fluid solutions. Phosphorescence of eosin, Trans. Faraday Soc. 57:1894–1904.Google Scholar
  83. Pitt, B. M., 1962, Oxidation of phenylpyruvates to aromatic aldehydes and oxalate, Nature 196:272–273.Google Scholar
  84. Porter, G., Yip, R. W., Dunston, J. M., Cessna, A. J., and Sugamori, S. E., 1971, Detection and lifetime of the triplet state of acetone in solution, Trans. Faraday Soc. 67:3149–3154.Google Scholar
  85. Puget, K., Michelson, A. M., and Avrameas, S., 1977, Light emission techniques for the microestimation of femtogram levels of peroxidase. Application to peroxidase (and other enzymes)-coupled antibody-cell antigen interactions, Anal. Biochem. 79:447–456.Google Scholar
  86. Ricard, J., and Job, D., 1974, Reaction mechanisms of indole-3-acetate degradation by peroxidases—a stopped-flow and low-temperature spectroscopic study, Eur. J. Biochem. 44:359–374.Google Scholar
  87. Rivas-Suárez, E., Durán, N., and Cilento, G., 1979, Energy transfer from enzyme-generated triplet acetone to riboflavin perturbed by molecules related to thyroxine, Photochem. Photobiol. 30:111–115.Google Scholar
  88. Rosen, H., and Klebanoff, S. J., 1977, Formation of singlet oxygen by the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 252:4803–4810.Google Scholar
  89. Saviotti, M. L., and Galley, W. C., 1974, Room temperature phosphorescence and the dynamic aspects of protein structure, Proc. Nat. Acad. Sci. USA 71:4154–4158.Google Scholar
  90. Schmidt, R., Kelm, H., and Brauer, H.-D., 1977, The energy transfer from acetone in the triplet state to 9,10-dibromoanthracene. An investigation at high pressures, Ber Bunsenges, Physik. Chem. 81:402–407.Google Scholar
  91. Schrauzer, G. N., 1977, Inorganic and nutritional aspects of cancer: a conference report, Bioinorg. Chem. 7:359–365.Google Scholar
  92. Schwartz, K., 1961, Separation of enol and keto tautomers of aromatic pyruvic acids by paper chromatography, Arch. Biochem. Biophys. 92:168–175.Google Scholar
  93. Shimomura, O., and Johnson, F. H., 1973, Mechanism of the luminescent oxidation of Cypridina luciferin, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 337–344, Plenum Press, New York.Google Scholar
  94. Shimomura, O., Johnson, F. H., and Kohama, Y., 1972, Reactions involved in bioluminescence systems of limpet (Latia neritoides) and luminous bacteria, Proc. Nat. Acad. Sci. USA 69:2086–2089.Google Scholar
  95. Shine, W. E., and Stumpf, P. K., 1974, Fat metabolism in higher plants. Recent studies on plant α-oxidation systems, Arch. Biochem. Biophys. 162:147–157.Google Scholar
  96. Shoaf, A. R., and Steele, R. H., 1974, Microsomal (μS) lipid peroxidation, drug oxidations and chemiluminescence (CL): mechanisms, Biochem. Biophys. Res. Commun. 61:1363–1371.Google Scholar
  97. Smith, K. C., 1976, Chemical adducts to deoxyribonucleic acid: their importance to the genetic alteration theory of aging, Interdiscipl. Topics Geront. 9:16–24.Google Scholar
  98. Stauff, J., Sander, U., and Jaeschke, W., 1973, Chemiluminescence of perhydroxyl- and carbonate-radicals, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 131–141, Plenum Press, New York.Google Scholar
  99. Steele, R. H., 1963, A photoinduced chemiluminescence of riboflavin in water containing hydrogen peroxide. I. The primary photochemical phase, Biochemistry 2:529–536.Google Scholar
  100. Stevens, B., and Perez, S. R., 1973, The photoperoxidation of unsaturated organic molecules. VIII. The effect of biacetyl, J. Photochem. 1:283–288.Google Scholar
  101. Sun, M., and Zigman, S., 1979, Isolation and identification of tryptophan photoproducts from aqueous solutions of tryptophan exposed to near-UV light, Photochem. Photobiol. 29:893–897.Google Scholar
  102. Szent-Györgyi, A., 1941, Towards a new biochemistry?, Science 93:609–611.Google Scholar
  103. Takayama, K., Nakano, M., Zinner, K., Vidigal, C. C. C., Durán, N., Shimizu, Y., and Cilento, G., 1976, Generation of electronic energy in the myoglobin catalyzed oxidation of acetoacetate to methylglyoxal, Arch. Biochem. Biophys. 176:663–670.Google Scholar
  104. Turro, N. J., 1977, Energy transfer processes, Pure Appl. Chem. 49:405–429.Google Scholar
  105. Turro, N. J., Lechtken, P., Schuster, G., Orell, J., Steinmetzer, H. C., and Adam, W., 1974, Indirect chemiluminescence by 1,2-dioxetanes. Evaluation of triplet-singlet excitation efficiencies. Long-range singlet-triplet energy transfer and an efficient triplet-singlet energy transfer, J.Am. Chem. Soc. 96:1627–1629.Google Scholar
  106. Turro, N. J., Liu, K. C., Chow, M. F., and Lee, P., 1978, Convenient and simple methods for the observation of phosphorescence in fluid solutions. Internal and external heavy atom and micellar effects, Photochem. Photobiol. 27:523–529.Google Scholar
  107. Ullman, E. F., 1972, U.S. patent 3,689,391; Chem. Abstr. 78:3585r.Google Scholar
  108. Ushijima, Y., and Nakano, M., 1978, Excitation of indole analogs by phagocytosing leukocytes, Biochem. Biophys. Res. Commun. 82:853–858.Google Scholar
  109. Vassil’ev, R. F., 1962, Secondary processes in chemiluminescent solutions, Nature 196:668–669.Google Scholar
  110. Vassil’ev, R. F., 1963, Spin-orbit coupling and intermolecular energy transfer, Nature 200:773–774.Google Scholar
  111. Vassil’ev, R. F., 1967, Chemiluminescence in liquid-phase reactions, Prog. React. Kinet. 4:305–352.Google Scholar
  112. Vaudo, A. F., and Hercules, D. M., 1970, Triplet-singlet energy transfer in fluid solution, J. Am. Chem. Soc. 92:3573–3577.Google Scholar
  113. Vidigal, C. C. C., and Cilento, G., 1975, Evidence for the generation of excited methylglyoxal on the myoglobin catalyzed oxidation of acetoacetate, Biochem. Biophys. Res. Commun. 62:184–190.Google Scholar
  114. Vidigal, C. C. C., Zinner, K., Durán, N., Bechara, E. J. H., and Cilento, G., 1975, Generation of electronic energy in the peroxidase-catalyzed oxidation of indole-3-acetic acid, Biochem. Biophys. Res. Commun. 65:138–145.Google Scholar
  115. Vidigal, C. C. C., Faljoni-Alário, A., Durán, N., Zinner, K., Shimizu, Y., and Cilento, G., 1979, Electronically excited species in the peroxidase-catalyzed oxidation of indoleacetic acid. Effect upon DNA and RNA, Photochem. Photobiol. 30:195–198.Google Scholar
  116. Weeks, O. B., Saleh, F. K., Wirahadikusumah, M., and Berry, R. A., 1973, Photoregulated carotenoid biosynthesis in nonphotosynthetic microorganisms, Pure Appl. Chem. 35:63–80.Google Scholar
  117. Welinder, K. G., 1976, Covalent structure of the glycoprotein horseradish peroxidase (EC, FEBS Lett. 72:19–23.Google Scholar
  118. Welinder, K. G., and Mazza, G., 1977, Amino acid sequences of heme-linked, histidine-containing peptides of five peroxidases from horseradish and turnip, Eur. J. Biochem. 73:353–358.Google Scholar
  119. Weiler, A., and Zachariasse, K., 1973, Chemiluminescence from radical ion recombination. VI. Reactions, yields, and energies, in: Chemiluminescence and Bioluminescence (M. J. Cormier, D. M. Hercules, and J. Lee, eds.), pp. 169–181, Plenum Press, New York.Google Scholar
  120. White, E. H., and Wei, C. C., 1970, A possible role for chemically produced excited states in biology, Biochem. Biophys. Res. Commun. 39:1219–1223.Google Scholar
  121. White, E. H., Wiecko, J., and Wei, C. C., 1970, Utilization of chemically generated excited species, J. Am. Chem. Soc. 92:2167–2168.Google Scholar
  122. White, E. H., Rapaport, E., Seliger, H. H., and Hopkins, T. A., 1971, The chemi- and bioluminescence of firefly luciferin: an efficient chemical production of electronically excited states, Bioorg. Chem. 1:92–122.Google Scholar
  123. White, E. H., Miano, J. D., Watkins, C. J., and Breaux, E. J., 1974, Chemically produced excited states, Angew. Chem. (Int. Ed. Engl.) 13:229–243.Google Scholar
  124. Wildner, G. F., and Criddle, R. S., 1969, Ribulose diphosphate carboxylase. I. A factor involved in light activation of the enzyme, Biochem. Biophys. Res. Commun. 37:952–960.Google Scholar
  125. Wilson, M. E., Trush, M. A., Van Dyke, K., and Neal, W., 1978, Induction of chemiluminescence in human polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 94:387–390.Google Scholar
  126. Wilson, T., 1976, chemiluminescence in the liquid phase: thermal cleavage of dioxetanes, in: Chemical Kinetics, (D. R. Hersbach, ed.), series 2, pp. 265–322, MTP Int. Rev. Sci., London.Google Scholar
  127. Wilson, T., and Schaap, P., 1971, The chemiluminescence from cis-diethoxy-l,2-dioxetane. An unexpected effect of oxygen, J. Am. Chem. Soc. 93:4126–4136.Google Scholar
  128. Wladimirov, Y. A., Korchagina, M. V., and Olenev, U. I., 1971, Chemiluminescence coupled with the formation of lipid peroxides in biological membranes. Reaction accompanied by luminescence, Biophysics 16:994–997.Google Scholar
  129. Wong, E., and Wilson, J. M., 1976, Products of the peroxidase-catalyzed oxidation of 4,2′,4′-trihydroxychalcone, Phytochemistry 15:1325–1332.Google Scholar
  130. Yeh, R., Hemphill, D., Jr., and Sell, H. M., 1970, Peroxidase-catalyzed formation of indole-3-carbaldehyde and 4-hydroxyquinoline from indole-3-acetaldehyde, Biochemistry 9:4229–4232.Google Scholar
  131. Zinner, K., Casadei de Baptista, R., and Cilento, G., 1974, Indole-3-pyruvic acid as a potential luciferin, Biochem. Biophys. Res. Commun. 61:889–898.Google Scholar
  132. Zinner, K., Durán N., Vidigal, C. C. C., Shimizu, Y., and Cilento, G., 1976, Chemienergized aromatic aldehydes from the peroxidase-catalyzed oxidation of pyruvates: excited vanillin from vanylpyruvate, Arch. Biochem. Biophys. 173:58–65.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Giuseppe Cilento
    • 1
  1. 1.Department of Biochemistry, Instituto de QuímicaUniversidade de São PauloCaixa PostalBrazil

Personalised recommendations