Advertisement

Membrane Models for Circadian Rhythms

  • Wolfgang Engelmann
  • Martin Schrempf

Abstract

Complex systems tend to oscillate, whether they be technical systems like bridges or machines, chemical processes like the Zhabotinsky reaction, or biological systems like organisms or ecosystems. In organisms, rhythmic events are widespread and vary common. For example, the spectrum of rhythmic phenomena in mammals ranges from periods of some milliseconds (nerves) to periods of a day (body temperature), a month (estrous cycle in humans), a year (reproductive cycles in larger mammals), or even longer (rhythmic changes in population density). The daily change of environmental factors such as light and temperature in its 24-h structure has apparently favored those organisms that adapted physiologically to this temporal order. This is just a corollary in the time domain to the structural and functional adaptation of organisms to the environment, and not surprising. We find 24-h rhythms in the mobility or’ bioluminescence of unicellular algae, in the formation of reproductive structures of fungi, in enzyme activities and cell volume changes of plants, and in the nervous activity and sleep-wakefulness pattern of animals, to name just a few.

Keywords

Circadian Rhythm Thylakoid Membrane Circadian Clock Membrane Model Temperature Compensation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamich, M., and Sweeney, B. M., 1976, The preparation and characterization of Gonyaulax spheroplasts, Planta (Berlin) 136:1–6.CrossRefGoogle Scholar
  2. Adamich, M., Laris, P. C., and Sweeney, B. M., 1976, In vivo evidence for a circadian rhythm in membranes in Gonyaulax, Nature (London) 261:583–585.CrossRefGoogle Scholar
  3. Aimi, R., and Shibasaki, S., 1975, Diurnal change in bioelectric potential of Phaseolus plant in relation to the movement and light condition, Plant Cell Physiol. 16:1157–1162.Google Scholar
  4. Aldridge, J., 1976, Short range intercellular communication, biochemical oscillations and circadian rhythms, in: CRC Handbook of Engineering in Medicine and Biology (D. G. Fleming and B. N. Feinberg, eds.), pp. 55–147, CRC Press Inc., Cleveland, Ohio.Google Scholar
  5. Allen, R. D., 1969, Mechanism of the seismonastic reaction in Mimosa pudica, Plant Physiol. 44:1101–1107.CrossRefGoogle Scholar
  6. Andrews, R. V., 1971, Circadian rhythm in adrenal organ cultures, Gegenbaurs Morphol. Jahrb, 117:89–98.Google Scholar
  7. Andrews, R. V., and Folk, G. E., 1964, Circadian metabolic patterns in cultured hamster adrenal glands. Comp. Biochem. Physiol. 11:393–409.CrossRefGoogle Scholar
  8. Applewhite, P. B., Satter, R. L., and Galston, A. W., 1973, Protein synthesis during endogenous rhythmic leaflet movement in Albizzia, J. Gen. Physiol. 62:707–713.CrossRefGoogle Scholar
  9. Aschoff, J., Hoffmann, K., Pohl, H., and Wever, R., 1975, Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber, Chronobiologia 2:23–78.Google Scholar
  10. Ashkenazi, I. E., Hartman, H., Strulovitz, B., and Dar, O., 1975, Activity rhythms of enzymes in human red blood cell suspensions, J. Interdiscipl. Cycle Res. 6:291–301.CrossRefGoogle Scholar
  11. Asprey, G. F., and Palmer, J. H., 1955, A new interpretation of the mechanics of pulvinar movement, Nature (London) 175:1122.CrossRefGoogle Scholar
  12. Baranska, J., and Wlodauer, P., 1969, Influence of temperature on the composition of fatty acids and. on lipogenesis in frog tissue, Comp. Biochem. Physiol. 28:553–570.CrossRefGoogle Scholar
  13. Barnett, A., Ehret, C. F., and Wille, J. J., 1971, Testing the chronon theory of circadian time keeping, in: Biochronometry (M. Menaker, ed.), pp. 637–656, National Academy of Sciences, Washington, D.C.Google Scholar
  14. Benson, J. A., and Jacklet, J. W., 1977a, Circadian rhythm of output from neurones in the eye of Aplysia. I. Effects of deuterium oxide and temperature, J. Exp. Biol. 70:151–166.Google Scholar
  15. Benson, J. A., and Jacklet, J. W., 1977b, Circadian rhythm of output from neurones in the eye of Aplysia. II. Effects of cold pulses on a population of coupled oscillators, J. Exp. Biol. 70:167–181.Google Scholar
  16. Benson, J. A., and Jacklet, J. W., 1977c, Circadian rhythm of output from neurones in the eye of Aplysia. III. Effects of light on clock and receptor output measured in the optic nerve, J. Exp. Biol. 70:183–194.Google Scholar
  17. Benson, J. A., and Jacklet, J. W., 1974d, Circadian rhythm of output from neurones in the eye of Aplysia. IV. A model of the clock: Differential sensitivity to light and low temperature pulses, J. Exp. Biol. 70:195–211.Google Scholar
  18. Binkley, S. A., Riebman, J. B., and Reilly, K. B., 1978, The pineal gland: A biological clock in vitro, Science 202:1198–1200.Google Scholar
  19. Bitensky, M. W., Gorman, R. E., and Miller, W. H., 1971, Adenylcyclase as a link between photon capture and changes in membrane permeability of frog photoreceptors, Proc. Nat. Acad. Sci. USA 68:561–562.CrossRefGoogle Scholar
  20. Bollig, I. C., 1977, Different circadian rhythms regulate photoperiodic flowering response and leaf movement in Pharbitis nil(L.) Choisy, Planta (Berlin) 35:137–142.CrossRefGoogle Scholar
  21. Bollig, I. C., and Wilkins, M. B., 1979, Inhibition of the circadian rhythm of CO2 metabolism in Bryophyllum leaves by cycloheximide and dinitrophenol, Planta (Berlin) 145:105–112.CrossRefGoogle Scholar
  22. Bollig, I. C., Mayer, K., Mayer, W.-E., and Engelmann, W., 1978, Effects of cAMP, theophylline, imidazole, and 4-(3,4-dimethoxybenzyl)-2-imidazolidone on the leaf movement rhythm of Trifolium repens—A test of the cAMP-hypothesis of circadian rhythms, Planta (Berlin) 141:225–230.CrossRefGoogle Scholar
  23. Bourret, J. A., Lincoln, R. G., and Carpenter, B. H., 1969, Fungal endogenous rhythms expressed by spiral figures, Science 166:763–764.CrossRefGoogle Scholar
  24. Bowling, D. J. F., 1976, Malate-switch hypothesis to explain the action of stornata, Nature (London) 262:393–394.CrossRefGoogle Scholar
  25. Brinckmann, E., and Lüttge, U., 1975, Inhibition of light-induced, transient membrane potential oscillations of Oenothera leaf cells by cycloheximide, Experientia 31:933–935.CrossRefGoogle Scholar
  26. Brinkmann, K., 1967, Der Einfluss von Populationseffekten auf die circadiane Rhythmik von Euglena gracilis, Nachr. Akad. Wiss. Göttingen, II Math. Phys. Klasse, 1967:138–140.Google Scholar
  27. Brinkmann, K., 1973, Respiration dependent types of temperature compensation in the circadian rhythm of Euglena gracilis, in: Biological and Biochemical Oscillators (B. Chance, E. K. Pye, A. K. Ghosh, and B. Hess, eds.), pp. 513–521, Academic Press, New York.Google Scholar
  28. Brinkmann, K., 1976a, Circadian rhythm in the kinetics of acid denaturation of cell membranes of Euglena gracilis, Planta (Berlin) 129:221–227.CrossRefGoogle Scholar
  29. Brinkmann, K., 1976, The influence of alcohols on the circadian rhythm and metabolism of Euglena gracilis, J. Interdiscipl. Cycle Res. 7:149–170.CrossRefGoogle Scholar
  30. Bruce, V. G., 1971, Mutants of the biological clock in Chlamydomonas reinhardi, Genetics 70:537–548.Google Scholar
  31. Bruce, V. G., and Pittendrigh, C. S., 1960, An effect of heavy water on the phase and period of the circadian rhythm in Euglena, J. Cell. Comp. Physiol. 56:25–31.CrossRefGoogle Scholar
  32. Bryant, T. R., 1972, Gas exchange in dry seeds: Circadian rhythmicity in the absence of DNA replication, transcription, and translation, Science 178:634–636.CrossRefGoogle Scholar
  33. Bünning, E., 1934, Die Mechanik der Variationsbewegung von Phaseolus multiflorus, Pringsheims Jahrb. Wiss. Bot. 79:191–230.Google Scholar
  34. Bünning, E., 1942, Untersuchungen über den physiologischen Mechanismus der endogenen Tagesrhythmik bei Pflanzen, Z. Bot. 37:433–486.Google Scholar
  35. Bünning, E., 1973, The Physiological Clock. Circadian Rhythms and Biological Chronometry, 3rd ed., Heidelberg science library, Springer-Verlag, New York.Google Scholar
  36. Bünning, E., 1977, Die physiologische Uhr, 3rd ed., Springer-Verlag, Berlin.CrossRefGoogle Scholar
  37. Bünning, E., 1978, Evolution der zirkadianen Organisation, Arzneim. Forsch. 10a:1811–1813.Google Scholar
  38. Bünning, E., and Baltes, J., 1962, Wirkung von Aethylalkohol auf die physiologische Uhr, Naturwissenschaften 49:19.CrossRefGoogle Scholar
  39. Bünning, E., and Baltes, J., 1963, Zur Wirkung von Schwerem Wasser auf die endogene Tagesrhythmik, Naturwissenschaften 50:622.CrossRefGoogle Scholar
  40. Bünning, E., and Chandrashekaran, M. K., 1975, Pfeffer’s views on rhythms, Chronobiologia 2:160–167.Google Scholar
  41. Bünning, E., and Joerrens, G., 1960, Tagesperiodische antagonistische Schwankungen der Blauviolett- und Gelbrot-Empfindlichkeit als Grundlage der photoperiodischen Diapauseinduktion bei Pieris brassicae, Z. Naturforsch. 15b:205–213.Google Scholar
  42. Bünning, E., and Moser, I., 1968, Einfluss des Wassers auf die circadiane Rhythmik von Phaseolus, Naturwissenschaften 55:450–451.CrossRefGoogle Scholar
  43. Bünning, E., and Moser, I., 1972, Influence of valinomycin on circadian leaf movements of Phaseolus, Proc. Nat. Acad. Sci. USA 69:2732–2733.CrossRefGoogle Scholar
  44. Bünning, E., and Moser, I., 1973, Light induced phase shifts of circadian leaf movements of Phaseolus: Comparison with the effect of potassium and of ethyl alcohol, Proc. Nat. Acad. Sci. USA 70:3387–3389.CrossRefGoogle Scholar
  45. Burgoyne, R. D., 1978, A model for the molecular basis of circadian rhythms involving monovalent ion-mediated translational control, FEBS Lett. 94:17–19.CrossRefGoogle Scholar
  46. Burnett, J. A., Lincoln, R. G., and Carpenter, B. H., 1969, Fungal endogenous rhythms expressed by spiral figures, Science 166:763–764.CrossRefGoogle Scholar
  47. Busch, G., 1953, Über die photoperiodische Formänderung der Chloroplasten von Selaginella serpens, Biol. Zentralbl. 72:598–629.Google Scholar
  48. Caldarola, P. C., and Pittendrigh, C. S., 1974, A test of the hypothesis that D2O affects circadian oscillations by diminishing the apparent temperature, Proc. Nat. Acad. Sci. USA 71:4386–4388.CrossRefGoogle Scholar
  49. Carrasco, L., 1977, The inhibition of cell functions after viral infection, FEBS Lett. 76:11–15.CrossRefGoogle Scholar
  50. Carrasco, L., and Smith, A. E., 1976, Sodium ions and the shut-off of host cell protein synthesis by picornaviruses, Nature (London) 264:807–809.CrossRefGoogle Scholar
  51. Chamberlin, T. C., 1965, The method of multiple working hypotheses, Science 148:754–759.CrossRefGoogle Scholar
  52. Cummings, F. W., 1975, A biochemical model of the circadian clock, J. Theor. Biol. 55:455–470.CrossRefGoogle Scholar
  53. Daan, S., Damassa, D., Pittendrigh, C. S., and Smith, E. R., 1975, An effect of castration and testosterone replacement on a circadian pacemaker in mice (Mus musculus), Proc. Nat. Acad. Sci. USA 72:3744–3747.CrossRefGoogle Scholar
  54. Dauelsberg Company, 1977, Lithium Index, Göttingen.Google Scholar
  55. Deguchi, T., 1979, Circadian rhythm of serotonin N-acetyltransferase activity in organ culture of chicken pineal gland, Science 203:1245–1247.CrossRefGoogle Scholar
  56. Dowse, H. B., and Palmer, J. D., 1972, The chronomutagenic effect of deuterium oxide on the period and entrainment of a biological rhythm, Biol. Bull. 143:513–524.CrossRefGoogle Scholar
  57. Edidin, M., and Wei, T., 1977, Different rates of cell surface antigens of mouse-human heterokaryons I. Analysis of the population, J. Cell Biol. 75:475–482.CrossRefGoogle Scholar
  58. Edmunds, L. N., Jr., and Savillo, R. L., 1975, Long-term in vitro culture of cell-free preparation of chloroplasts isolated from Euglena gracilis, in: Proceedings of the Third International Congress on Photosynthesis (M. Avron, ed.), pp. 1719–1730, Elsevier, Amsterdam.Google Scholar
  59. Ehret, C. F., and Dobra, K. W., 1977, The infradian eucaryotic cell: A circadian energy-reserve escapement, in: Proc. 12th Intern. Symp. Intern. Soc. Chronobiol., Washington D.C., pp. 563–570, Il Ponte Publishers, Milano.Google Scholar
  60. Ehret, C. F., and Trucco, E., 1967, Molecular models for the circadian clock. I. The chronon concept, J. Theor. Biol. 15:240–262.CrossRefGoogle Scholar
  61. Ehret, C. F., and Wille, J. J., 1970, The photobiology of circadian rhythms in protozoa and other eucaryotic microorganisms, in: Photobiology of Microorganisms (P. Halldal, ed.), pp. 369–416, Wiley Interscience, London.Google Scholar
  62. Ehret, C. F., Potter, V. P., and Dobra, K. W., 1975, Chronotypic action of theophylline and of pentobarbital as circadian Zeitgebers in the rat, Science 188:1212–1215.CrossRefGoogle Scholar
  63. Ehrhardt, V., and Rensing, L., 1976, Circadian rhythm of active amino acid transport in rat liver, J. Interdiscipl. Cycle Res. 7:287–290.CrossRefGoogle Scholar
  64. Enderle, W., 1951, Tagesperiodische Wachstums- und Turgorschwankungen an Gewebekulturen, Planta (Berlin) 39:570–588.CrossRefGoogle Scholar
  65. Engelmann, W., 1960, Endogene Rhythmik und photoperiodische Blühinduktion bei Kalanchoe Planta (Berlin) 55:496–511.CrossRefGoogle Scholar
  66. Engelmann, W., 1973, A slowing down of circadian rhythms by lithium ions, Z. Naturforsch. 28c:733–736.Google Scholar
  67. Engelmann, W., and Honegger, H. W., 1966, Tagesperiodische Schlüpfrhythmik einer ingenlisen Drosophila melanogaster-Mutante, Naturwissenschaften 53:588.CrossRefGoogle Scholar
  68. Engelmann, W., and Johnsson, A., 1978, Attenuation of the petal movement rhythm in Kalanchoe with light pulses, Physiol. Plant. 43:168–176.CrossRefGoogle Scholar
  69. Engelmann, W., and Mack, J., 1978, Different oscillators control the circadian rhythm of eclosion and activity in Drosophila, J. Comp. Physiol. 127:229–237.Google Scholar
  70. Engelmann, W., Karlsson, H. G., and Johnsson, A., 1973, Phase shifts in the Kalanchoe petal rhythm, caused by light pulses of different duration, int. J. Chronobiol. 1:147–156.Google Scholar
  71. Engelmann, W., Eger, I., Johnsson, A., and Karlsson, H. G., 1974a, Effect of temperature pukes on the petal rhythm of Kalanchoe: An experimental and theoretical study, Int. J. Chronobiol. 2:347–358.Google Scholar
  72. Engelmann, W., Maurer, A., Mühlbach, M., and Johnsson, A., 1974b, Action of lithium ions and heavy water in slowing circadian rhythms of petal movement in Kalanchoe, J. Interdiscipl. Cycle Res. 5:199–205.Google Scholar
  73. Engelmann, W., Hartmann, R., and Mager, A., 1977, Temperature dependence of the period lengthening effect of lithium ions in the Kalanchoe rhythm, in: Rhythmische Funktionen in Biologischen Systemen (G. Lassmann and F. Seitelberger, eds.), pp. 181–185, Facultas-Verlag, Vienna.Google Scholar
  74. Enright, J. T., 1971a, Heavy water slows biological timing processes, Z. Vergl. Physiol. 72:1–16.CrossRefGoogle Scholar
  75. Enright, J. T., 1971b, The internal clock of drunken isopods, Z. Vergl. Physiol. 75:332–346.CrossRefGoogle Scholar
  76. Enright, J. T., 1979, The timing of sleep and wakefulness, in: Studies in Brain Functions (V. Braitenberg, ed.), Springer Verlag, New York.Google Scholar
  77. Eskin, A., 1972, Phase shifting a circadian rhythm in the eye of Aplysia by high potassium pulses, J. Comp. Physiol. 80:353–376.CrossRefGoogle Scholar
  78. Eskin, A., 1974, Circadian rhythmicity in the isolated eye of Aplysia: Mechanism of entrapment, in: The Neurosciences (F. O. Schmitt and F. G. Worden, eds.), pp. 531–535, third study program, MIT Press, Cambridge.Google Scholar
  79. Eskin, A., and Corrent, G., 1977, Effects of divalent cations and metabolic poisons on the circadian rhythm from the Aplysia eye, J. Comp. Physiol. 117:1–21.CrossRefGoogle Scholar
  80. Feldman, J. F., 1975, Circadian periodicity in Neurospora: Alteration by inhibitors of cyclic AMP and phosphodiesterase, Science 190:789–790.CrossRefGoogle Scholar
  81. Feldman, J. F., and Hoyle, M. N., 1973, Isolation of circadian clock mutants of Neurospora crassa, Genetics 75:605–613.Google Scholar
  82. Feldman, J. F., and Waser, N. M., 1971, New mutations affecting circadian rhythmicity in Neurospora, in: Biochronometry (M. Menaker, ed.), pp. 652–656, National Academy of Sciences, Washington, D.C.Google Scholar
  83. Felle, H., and Bentrup, F. W., 1977, A study of the primary effect of the uncoupter carbonyl cyanide m-chlorophcnylhydrazone on membrane potential and conductance in Riccia fluitans, Biochim. Biophys. Acut 464:179–187.CrossRefGoogle Scholar
  84. Fowler, V., and Branton, D., 1977, Lateral mobility of human erythrocyte integral membrane proteins, Nature (London) 268:23–26.CrossRefGoogle Scholar
  85. Frausto da Silva, J. J. R., and Williams, R. J. P., 1976, Possible mechanisms for the biological action of lithium, Nature (London) 263:237–239.CrossRefGoogle Scholar
  86. Frelinger, J. G., Motulsky, H., and Woodward, D. O., 1976, Effects of chloramphenicol on the circadian rhythm of Neurospora crassa. Plant Physiol. 58:592–594.CrossRefGoogle Scholar
  87. Gander, P. H., 1976, A model for the circadian pacemaker of Hemideira thoracica derived from the effects of temperature on its activity rhythm, Thesis, University of Auckland, New Zealand.Google Scholar
  88. Ganesan, M. G., 1979, Studies on plant wilts with special reference to the effect of toxins on membranes, Thesis, Madurai University, India.Google Scholar
  89. Glinka, Z., and Reinhold, L., 1972, Abscisic acid raises the permeability of plant cells to water, Plant Physiol. 49:602–606.CrossRefGoogle Scholar
  90. Goodwin, B. C., 1963, Temporal Organization in Cells. A Dynamic Theory of Cellular Control Processes, Academic Press, New York.Google Scholar
  91. Goodwin, B. C., and Cohen, M. H., 1969, A phase-shift model for the spatial and temporal organization of developing systems, J. Theor. Biol. 25:49–107.CrossRefGoogle Scholar
  92. Gradmann, D., and Mayer, W.-E., 1977, Membrane potentials and ion permeabilities in flexor cells of the laminar pulvini of Phaseolus coccineus L., Planta (Berlin) 137:19–24.CrossRefGoogle Scholar
  93. Gutknecht, J., and Tosteson, D. C., 1970, Ionic permeability of thin lipid membranes. Effects of n-alkyl alcohols, polyvalent cations, and a secondary amine, J. Gen. Physiol. 55:359–374.CrossRefGoogle Scholar
  94. Gwinner, E., 1974, Testosterone induces splitting of circadian locomotor activity rhythms in birds, Science 185:72–74.CrossRefGoogle Scholar
  95. Gwinner, E., 1975, Effects of season and external testosterone on the free running circadian activity rhythm of european starlings (Sturnus vulgaris), J. Comp. Physiol. 103:315–328.CrossRefGoogle Scholar
  96. Halaban, R., 1969, Effects of light quality on the circadian rhythm of leaf movement of a short day plant, Plant Physiol. 44:973–977.CrossRefGoogle Scholar
  97. Halberg, F., and Connor, R. L., 1961, Circadian organization and microbiology: Variance spectra and a periodogram on behavior of Escherichia coli growing in a fluid culture, Proc. Minn. Acad. Sci. 29:227–239.Google Scholar
  98. Hardeland, R., Hohmann, D., and Rensing, L., 1973, The rhythmic organization of rodent liver. A review, J. Interdiscipl. Cycle Res. 4:89–118.CrossRefGoogle Scholar
  99. Hartman, H., Ashkenazi, I., and Epel, B. L., 1976, Circadian changes in membrane properties of human red blood cells in vitro, as measured by a membrane probe, FEBS Lett. 67:161–163.CrossRefGoogle Scholar
  100. Hastings, J. W., 1960, Biochemical aspects of rhythms: phase shifting by chemicals, Cold Spring Harbor Symp. Quant. Biol. 25:131–143.CrossRefGoogle Scholar
  101. Hastings, J. W., and Bode, V. C., 1962, Biochemistry of rhythmic systems, Ann. N. Y. Acad. Sci. 98:876–889.CrossRefGoogle Scholar
  102. Hastings, J. W., and Sweeney, B. M., 1958, A persistent diurnal rhythm of luminescence in Gonyaulax polyedra, Biol. Bull. 115:440–458.CrossRefGoogle Scholar
  103. Hastings, J. W., Aschoff, J. W. L., Biinning, E., Hoffmann, K., Pittendrigh, C. S., and Winfree, A. T., 1976, Basic features, group report, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 49–62, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  104. Heide, V. M., 1976, Photoperiodism in higher plants: An interaction of phytochrome and circadian rhythms, Physiol. Plant. 39:25–32.CrossRefGoogle Scholar
  105. Heimann, M., 1952, Abhängigkeit des Blutungsverlaufes von Beleuchtung und Blattzahl (Untersuchungen an Kalanchoe blossfeldiana), Planta (Berlin) 40:377–390.CrossRefGoogle Scholar
  106. Hellgren, M., Brogardh, T., and Johnsson, A., 1976, Effects of valinomycin on oscillatory transpiration of Avena leaves, Z. Pflanzenphysiol. 80:251–260.Google Scholar
  107. Hillman, W. S., 1976, Biological rhythms and physiological timing, Ann. Rev. Plant Physiol. 27:159–179.CrossRefGoogle Scholar
  108. Hochachka, P. W., and Somero, G. N., 1973, Strategies of Biochemical Adaptation, Saunders, Philadelphia.Google Scholar
  109. Hoffmann, K., 1971, Splitting of the circadian rhythm as a function of light intensity, in: Biochronometry (M. Menaker, ed.), pp. 134–150. National Academy of Sciences, Washington, D.C.Google Scholar
  110. Hoffmans, M., 1978, Der Einfluss von Valinomycin auf Wachstum und circadiane Rhythmik von Neurospora crassa, Diplomarbeit, Universität Bonn.Google Scholar
  111. Hofmann, K., Günderoth-Palmowski, M., Wiedenmann, G., and Engelmann, W., 1978, Further evidence for period lengthening effect of Li on circadian rhythms, Z. Naturforsch. 33c:231–234.Google Scholar
  112. Jacklet, J. W., and Geronimo, J., 1971, Circadian rhythm: Population of interacting neurons, Science 174:299–302.CrossRefGoogle Scholar
  113. Jenkinsson, I. S., and Scott, B. I. H., 1961, Bioelectric oscillations of bean roots: Further evidence for a feedback oscillator. I. Extracellular response to oscillations in osmotic pressure and auxin, Austr.J. Biol. Soc. 14:231–247.Google Scholar
  114. Johnsson, A., and Karlsson, H. G., 1972, A feedback model for biological rhythms. I. Mathematical description and basic properties of the model, J. Theor. Biol. 36:153–174.CrossRefGoogle Scholar
  115. Johnsson, A., Karlsson, H. G., and Engelmann, W., 1973, Phase-shift effects in the Kalanchoe petal rhythm due to two or more light pulses, Physiol. Plant. 28:134–142.CrossRefGoogle Scholar
  116. Jones, P. C. T., 1972, Central role for ATP in determining some aspects of animal and plant cell behaviour, J.Theor. Biol. 34:1–13.CrossRefGoogle Scholar
  117. Karakashian, M. W., and Schweiger, H. G., 1976, Circadian properties of the rhythmic system in individual nucleated and enucleated cells of Acetabularia mediterranea, Exp. Cell Res. 97:366–377.CrossRefGoogle Scholar
  118. Karlsson, H. G., and Johnsson, A., 1972, A feedback model for biological rhythms. II. Comparisons with experimental results, especially on the petal rhythm of Kalanchoe, J. Theor. Biol. 36:175–194.CrossRefGoogle Scholar
  119. Kastenmeier, B., Reich, U., and Engelmann, W., 1977, Effects of alcohol on the circadian petal movement rhythm of Kalanchoe and the rhythmic leaf movement of Desmodium, Chronobiologia 4:122.Google Scholar
  120. Keller, S., 1960, Über die Wirkung chemischer Faktoren auf die tagesperiodischen Blattbewegungen von Phaseolus multiflorus, Z. Bot. 48:32–57.Google Scholar
  121. Keynan, A., Njus, D. L., Wisnieski, B. J., Schweiger, M. F. W., Woodward, D. O., and Sweeney, B. M., 1976, Participation of membranes. Group report, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 239–244, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  122. Kiessig, R. S., Herz, J. M., and Sweeney, B. M., 1979, Shifting the phase of the circadian rhythm in bioluminescence in Gonyaulax with vanillic acid, Plant Physiol. 63:324–327.CrossRefGoogle Scholar
  123. King, R. W., 1975, Multiple circadian rhythms regulate photoperiodic flowering responses in Chenopodium rubrum, Can. J. Bot. 53:2631–2638.CrossRefGoogle Scholar
  124. King, R. W., and Cumming, B. G., 1972, The role of phytochrome in photoperiodic time measurement and its relation to rhythmic timekeeping in the control of flowering in Chenopodium rubrum, Planta (Berlin) 108:39–57.CrossRefGoogle Scholar
  125. Kinsky, S. C., Luse, S. A., and van Denen, L., 1966, Interaction of polyene antibiotics with natural and artificial membrane systems, Fed. Proc. 25:1503–1510.Google Scholar
  126. Kirschstein, M., 1969, Das rhythmische Verhalten einer farblosen Mutante von Euglena gracilis, Planta (Berlin) 95:126–134.CrossRefGoogle Scholar
  127. Kiyosawa, K., and Tanaka, H., 1976, Change in potassium distribution in Phaseolus pulvinus during circadian movement of the leaf, Plant Cell Physiol. 17:289–298.Google Scholar
  128. Kluge, M., and Ting, I. P., 1978, Crassuiacean Acid Metabolism. Analysis of an Ecological Adaptation, Springer-Verlag, Berlin.Google Scholar
  129. Koehler, W., and Fleissner, G., 1978, Internal desynchronisation of bilaterally organized circadian oscillators in the visual system of insects, Nature (London) 274:708–710.CrossRefGoogle Scholar
  130. Koenitz, W., 1965, Elektronenmikroskopische Untersuchungen an Euglena gracilis im tagesperiodischen Licht-Dunkel-Wechsel, Planta (Berlin) 66:345–373.CrossRefGoogle Scholar
  131. Kondo, T., and Tsudzuki, T., 1978, Rhythm in potassium uptake by a duckweed, Lemna gibba G3, Plant Cell Physiol. 19:1465–1473.Google Scholar
  132. Konopka, R. J., and Benzer, S., 1971, Clock mutants of Drosophila melanogaster, Proc. Nat. Acad. Sci. USA 68:2112–2116.CrossRefGoogle Scholar
  133. Koukkari, W. L., 1979, Rhythms and their relations to hormones, in: Hormonal Regulation of Plant Development (R. P. Pharis and D. M. Reid, eds.), Encyclopedia of Plant Physiology, New Series, Vol. III, Springer-Verlag, Berlin.Google Scholar
  134. Krieger, D. T., and Hauser, H., 1978, Comparison of synchronization of circadian corticosteroid rhythms by photoperiod and food, Proc. Nat. Acad. Sci. USA 75:1577–1581.CrossRefGoogle Scholar
  135. Lickey, M. E., Block, G. D., Hudson, D. J., and Smith, J. T., 1976, Circadian oscillators and photoreceptors in the gastropod Aplysia, Photochem. Photobiol. 23:253–273.CrossRefGoogle Scholar
  136. Lonergan, T. A., and Sargent, M. L., 1978, Regulation of the photosynthesis rhythm in Euglena gracilis. II. Involvement of the light reactions, Plant Physiol. 61:150–153.CrossRefGoogle Scholar
  137. Lubin, M., 1967, Intracellular potassium and macromolecular synthesis in mammalian cells, Nature (London) 213:451–453.CrossRefGoogle Scholar
  138. Liittge, U., and Ball, E., 1977, Water relation parameters of the CAM plant Kalanchoe daigremontiana in relation to diurnal malate oscillations, Oecologia, 31:85–94.CrossRefGoogle Scholar
  139. Liittge, U., Kluge, M., and Ball, E., 1975, Effects of osmotic gradients on vacuolar malic acid storage. A basic principle in oscillatory behaviour of Crassulacean acid metabolism, Plant Physiol. 56:613–616.CrossRefGoogle Scholar
  140. Lysek, G., 1978, Circadian rhythms, in: Filamentous Fungi (J. E. Smith and D. R. Berry, eds.), Vol. 3, pp. 376–388, Arnold Publishers, London.Google Scholar
  141. Lysek, G., and Witsch, H. von, 1974a, Lichtabhängige Zonierungen bei Pilzen und ihre physiologischen Grundlagen, Ber. Dtsch. Bot. Ges. 87:207–213.Google Scholar
  142. Lysek, G., and Witsch, H. von, 1974b, Rhythmisches Mycelwachstum bei Podospora anserina. 7. Der Einfluss oberflächenaktiver Substanzen und Antibiotika im Dunkeln und im Licht, Arch. Mikrobiol. 97:227–237.Google Scholar
  143. Mabood, S. F., Newman, P. F. J., and Nimmo, I. A., 1978, Circadian rhythm in the activity of acetylcholinesterase of human erythrocytes incubated in vitro, Biochem. Soc. Trans. 6:305–308.Google Scholar
  144. Martin, W., Kipry, U., and Brinkmann, K., 1977, Timesdia—Ein interaktives Programm zur Analyse periodischer Zeitreihen, EDV in Medizin und Biologie 8:90–94.Google Scholar
  145. Martin, U., Martin, H., and Lindauer, M., 1978, Transplantation of a time-signal in honeybees, J. Comp. Physiol. 124A:193–201.CrossRefGoogle Scholar
  146. Maurer, A., and Engelmann, W., 1974, Effect of D2O on the circadian rhythm of petal movement of Kalanchoe, Z. Naturforsch. 29c:36–38.Google Scholar
  147. Mayer, W.-E., 1966, Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten, Planta (Berlin) 70:237–256.CrossRefGoogle Scholar
  148. Mayer, W.-E., 1977, Kalium- und Chloridverteilung im Laminargelenk von Phaseolus coccineus L. während der circadianen Blattbewegung im tagesperiodischen Licht-Dunkelwechsel, Z. Pflanzenphysiol. 83:127–135.Google Scholar
  149. Mayer, W.-E., and Sadleder, D., 1972, Unterschiedliche Lichtintensitätsabhängigkeit der Spontanperiode als Ursache interner Desynchronisation circadianer Rhythmen bei Phaseolus coccineus, Planta (Berlin) 108:173–178.CrossRefGoogle Scholar
  150. Mayer, W.-E., and Scherer, I., 1975, Phase shifting effect of caffeine in the circadian rhythm of Phaseolus coccineus L., Z. Naturforsch. 30c:855–856.Google Scholar
  151. Mayer, W.-E., Gruner, R., and Strubel, H., 1975, Periodenverlängerung und Phasenverschiebungen der circadianen Rhythmik von Phaseolus coccineus L. durch Theophyllin, Planta (Berlin) 125:141–148.Google Scholar
  152. McEvoy, R. C., and Koukkari, W. L., 1972, Effects of ethylendiamintetraacetic acid, auxin, and gibberellic acid on phytochrome controlled nyctinasty in Albizzia julibrissin, Physiol. Plant. 26:143–147.CrossRefGoogle Scholar
  153. McMurry, L., and Hastings, J. W., 1972, No desynchronisation among four circadian rhythms in the unicellular alga, Gonyaulax polyedra, Science 175:1137–1138.Google Scholar
  154. Mergenhagen, D., 1976, Gene expression in its role in rhythms, in: The Molecular Basis of Orcadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 353–359, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  155. Mergenhagen, D., and Schweiger, H. G., 1973, Recording the oxygen production of a single Acetabularia cell for a prolonged period, Exp. Ceil Res. 81:360–364.CrossRefGoogle Scholar
  156. Mergenhagen, D., and Schweiger, H. G., 1974, Orcadian rhythmicity: Does intercellular synchronization occur in Acetabularia?, Plant Sci. Lett. 3:387–389.CrossRefGoogle Scholar
  157. Mergenhagen, D., and Schweiger, H. G., 1975, Orcadian rhythm of oxygen evolution in cell fragments of Acetabularia mediterranea, Exp. Cell Res. 92:127–130.CrossRefGoogle Scholar
  158. Miller, R. J., Bell, D. T., Koeppe, D. E., 1971, The effects of water stress on some membrane characteristics of corn mitochondria. Plant Physiol. 48:229–231.CrossRefGoogle Scholar
  159. Minis, D. H., and Pittendrigh, C. S., 1963, Orcadian oscillation controlling hatching: Its ontogeny during embryogenesis of a moth, Science 159:534–536.CrossRefGoogle Scholar
  160. Mitra, B., and Sen, S. P., 1976, Evidence of the involvement of membrane-bound steroids in the photoperiodic induction of flowering in Xanthium, Experientia 33:316–317.CrossRefGoogle Scholar
  161. Morel, C., and Queiroz, V., 1978, Dawn signal as a rhythmical timer for the seasonal adaptive variation of CAM: A model, Plant Cell Environ. 1:141–149.CrossRefGoogle Scholar
  162. Morin, L. P., Fitzgerald, K. K., and Zucker, I., 1977, Estradiol shortens the period of hamster circadian rhythms, Science 196:305–307.CrossRefGoogle Scholar
  163. Mosebach, G., 1940, Untersuchungen über die tagesperiodische Bewegung der Blattgelenke von Phaseolus. Wiss. Bot. 89:20–88.Google Scholar
  164. Nakagawa, H., Nagai, K., Kida, K., and Nishio, T., 1978, Control mechanism of circadian rhythms of feeding behaviour and hepatic and renal gluconeogenesis, in: Naito International Symposium on Biorhythm and Its Central Mechanism, pp. 43–44, Kaidanren Kaikan, Tokyo, Japan.Google Scholar
  165. Ninnemann, H., 1979, Photoreceptors for circadian rhythms, Photochem. Photobiol. Rev. 4:207–266.CrossRefGoogle Scholar
  166. Njus, D., 1976, Experimental approaches to membrane models, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 283–294, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  167. Njus, D., Sulzman, F. M., and Hastings, J. W., 1974, Membrane model for the circadian clock, Nature (London) 248:116–120.CrossRefGoogle Scholar
  168. Njus, D., Mc Murry, L., and Hastings, J. W., 1977, Conditionally of circadian rhythmicity: Synergistic action of light and temperature, J. Comp. Physiol. B. 117:335–344.CrossRefGoogle Scholar
  169. Novak, B., and Greppin, H., 1979, High-frequency oscillation and circadian rhythm of the membrane potential in spinach leaves, Planta (Berlin) 144:225–240.CrossRefGoogle Scholar
  170. Novak, B., and Sironval, C., 1976, Circadian rhythm of the transcellular current in regenerating enucleated posterior stalk segments of Acetabularia mediterranea. Plant Sci. Lett. 6:273–283.CrossRefGoogle Scholar
  171. Oota, Y., and Nakashima, H., 1978, Photoperiodic flowering in Lemna gibba G3: Time measurement, Bot. Mag. Tokyo (special issue) 1:177–198.Google Scholar
  172. Patterson, G. W., 1970, Effect of culture temperature on fatty acid composition of Chlorella sorokiniana. Lipids 5:597–600.CrossRefGoogle Scholar
  173. Pavlidis, T., 1971, Mathematical model of circadian rhythms: Their usefulness and their limitation, in: Biochronometry (M. Menaker, ed.), pp. 110–116, National Academy of Sciences, Washington, D.C.Google Scholar
  174. Pavlidis, T., 1973, Biological Oscillators: Their Mathematical Analysis, Academic Press, New York.Google Scholar
  175. Pavlidis, T., and Kauzmann, W., 1969, Towards a quantitative biochemical model for circadian oscillators, Arch. Biochem. Biophys. 132:338–348.CrossRefGoogle Scholar
  176. Pfeffer, W., 1907, Untersuchungen über die Entstehung der Schlafbewegungen der Blattorgane, Abh. Sächs. Akad. Wiss. Math. Phys, Kl. 30:257–472.Google Scholar
  177. Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences (F. O. Schmitt and F. G. Worden, eds.), pp. 437–458, third study program, MIT Press, Cambridge.Google Scholar
  178. Pittendrigh, C. S., and Daan, S., 1976, A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A pacemaker for all seasons, J. Comp. Physiol. 106:333–355.CrossRefGoogle Scholar
  179. Pittendrigh, C. S., and Minis, D. H., 1971, The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species, in: Biochronometry (M. Menaker, ed.), pp. 212–250, National Academy of Sciences, Washington, D.C.Google Scholar
  180. Pittendrigh, C. S., Caldarola, P. C., and Cosbey, E. S., 1973, A differential effect of heavy water on temperature-dependent and temperature-compensated aspects of the circadian system of Drosophila pseudoobscura, Proc. Nat. Acad. Sci. USA 70:2037–2041.CrossRefGoogle Scholar
  181. Platt, J. R., 1964, Strong inference, Science 146:347–353.CrossRefGoogle Scholar
  182. Pressman, B. C., 1976, Biological applications of ionophores, Ann. Rev. Biochem. 45:501–530.CrossRefGoogle Scholar
  183. Prezelin, B. B., and Sweeney, B. M., 1977, Characterization of photosynthetic rhythms in marine dinoflagellates. 2. Photosynthesis-irradiance curves and in vivo chlorophyll a fluorescence. Plant Physiol. 60:388–392.CrossRefGoogle Scholar
  184. Racusen, R. H., and Galston, A. W., 1977, Electrical evidence for rhythmic changes in the co-transport of sucrose and hydrogen ions in Samanea pulvini, Planta (Berlin) 135:57–62.CrossRefGoogle Scholar
  185. Racusen, R. H., and Satter, R. L., 1975, Rhythmic and phytochrome-regulated transmembrane potential in Samanea pulvini, Nature (London) 225:408–410.CrossRefGoogle Scholar
  186. Racusen, R. H., Kinnersley, A. M., and Galston, A. W., 1977, Osmotically induced changes in electrical properties of plant protoplast membranes, Science 198:405–407.CrossRefGoogle Scholar
  187. Rensing, L., 1971, Hormonal control of circadian rhythms in Drosophila, in: Biochronometry (M. Menaker, ed.), pp. 527–540, National Academy of Sciences, Washington, D.C.Google Scholar
  188. Rensing, L., 1973, Effects of 2,4-dinitrophenol and dinactin on heat sensitive and ecdysone-specific puffs of Drosophila salivary gland chromosomes in vitro, Cell Diff. 2:221–228.CrossRefGoogle Scholar
  189. Richter, C. P., 1977, Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster, Proc. Nat. Acad. Sci. USA 74:1295–1299.CrossRefGoogle Scholar
  190. Robison, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York.Google Scholar
  191. Roeder, P. E., Forman, L. R., and Brody, S., 1977, Unsaturated fatty acid oscillations in Neurospora: A role in the circadian clock?, J. Cell Biol. 75:215a.Google Scholar
  192. Rogers, L. A., and Green bank, G. R., 1930, The intermittant growth of bacterial cultures, J. Bacteriol. 19:181–190.Google Scholar
  193. Sadasivan, T. S., 1961, Physiology of wilt disease, Ann. Rev. Plant Physiol. 12:449–468.CrossRefGoogle Scholar
  194. Sagromsky, H., 1976, Induktion einer endogenen Rhythmik bei Mutanten des Pilzes Penicillium claviforme Bainier durch membranwirksame Stoffe, Beitr. Biol. Pflanz. 52:383–392.Google Scholar
  195. Salman, A.-G. F., 1971, Zur Induktion einer endogenen Rhythmik bei Mutanten des Pilzes Penicillium claviforme Bainier. I. Wirkungsweise von Alkoholen, Arch. Protistenkd. 113:306–313.Google Scholar
  196. Sargent, M. L., Ashkenazi, I. E., Bradbury, E. M., Bruce, V. G., Ehret, C. F., Feldman, J. F., Karakashian, M. W., Konopka, R. J., Mergenhagen, D., Schütz, G. A., Schweiger, H. G., and Vanden Driessche, T. E. A., 1976, The role of genes and their expression, group report, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 295–310, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  197. Satter, R. L., and Galston, A. W., 1971, Phytochrome controlled nyctinasty in Albizzia julibrissin. III. Interactions between an endogenous rhythm and phytochrome in control of potassium flux and leaflet movement, Plant Physiol. 48:740–746.CrossRefGoogle Scholar
  198. Satter, R. L., and Galston, A. W., 1973, Leaf movements: Rosetta stone of plant behaviour? BioScience 23:407–416.CrossRefGoogle Scholar
  199. Satter, R. L., Marinoff, P., and Galston, A. W., 1970, Phytochrome controlled nyctinasty in Albizzia julibrissin. II. Potassium flux as a basis for leaflet movement, Am. J. Bot. 57:916–926.CrossRefGoogle Scholar
  200. Satter, R. L., Applewhite, P. B., Kreis, D. J., and Galston, A. W., 1973, Rhythmic leaflet movement in Albizzia julibrissin. Effect of electrolytes and temperature alteration, Plant Physiol. 52:202–207.CrossRefGoogle Scholar
  201. Satter, R. L., Geballe, G. T., Applewhite, P. B., and Galston, A. W., 1974, Potassium flux and leaf movement in Samanea saman. I. Rhythmic movement, J.Gen. Physiol. 64:413–430.CrossRefGoogle Scholar
  202. Satter, R. L., Schrempf, M., Applewhite, P. B., and Galston, A. W., 1977, Phytochromerhythm interactions in nyctinastic plants, in: Proc. 12th Intern. Symp. Intern. Soc. Chronobiol., Washington, D.C., pp. 741–749, Il Ponte Publ., Milano.Google Scholar
  203. Schrempf, M., 1975, Eigenschaften und Lokalisation des Photorezeptors für phasenverschiebendes Störlicht bei der Blütenblattbewegung von Kalanchoe blossfeldiana (v. Poetin.), Thesis, University Tübingen, Germany.Google Scholar
  204. Schrempf, M., 1977, Studies of the circadian rhythm of petal movement in Kalanchoe blossfeldiana, J. Interdiscipl. Cycle Res. 8:396–400.CrossRefGoogle Scholar
  205. Schrempf, M., Satter, R. L., and Galston, A. W., 1976, Potassium-linked chloride fluxes during rhythmic leaf movement of Albizzia julibrissin, Plant Physiol. 58:190–192.CrossRefGoogle Scholar
  206. Schweiger, H. G., 1978, Zirkadiane Rhythmen in Einzellern, Arzneim. Forsch. 28:1814–1818.Google Scholar
  207. Schweiger, H. G., and Schweiger, M. F. W., 1977, Circadian rhythms in unicellular organisms: an endeavour to explain the molecular mechanism, Intern. Rev. Cytol. 51:315–342.CrossRefGoogle Scholar
  208. Scott, B. I. H., Gulline, H. F., and Rolimon, G. R., 1977, Circadian electrochemical changes in the pulvinules of Trifolium repens. Aust. J. Plant Physiol. 4:193–206.CrossRefGoogle Scholar
  209. Seeman, P., 1966, Membrane stabilization by drugs: tranquilizers, steroids, and anestethics, Intern. Rev. Neurobiol. 9:145–221.CrossRefGoogle Scholar
  210. Seeman, P., 1972, The membrane actions of anestethics and tranquilizers, Pharm. Rev. 24:583–635.Google Scholar
  211. Selkov, E. E., 1972, Nonlinearity of multienzyme systems, in: Analysis and Simulation of Biochemical Systems, (H. C. Hemker and B. Hess, eds.), Fed. Europ. Biochem. Soc., 8th meeting, Amsterdam, Vol. 25, pp. 145–161, North Holland Publishing Company, Amsterdam.Google Scholar
  212. Shimazu, T., and Ishikawa, K., 1978, Hypothalamic regulation of the circadian rhythm of liver glycogen metabolism, in: Naito International Symposium on Biorhythm and Its Central Mechanism, p. 47, Kaidanren Kaikan, Tokyo, Japan.Google Scholar
  213. Shinohara, T., and Piatigorsky, J., 1977, Regulation of protein synthesis, intracellular electrolytes and cataract formation in vitro, Nature (London) 270:406–411.CrossRefGoogle Scholar
  214. Singer, I., and Rotenberg, D., 1973, Mechanisms of lithium action, New Engl. J. Med. 289:254–260.CrossRefGoogle Scholar
  215. Steinheil, W., 1970, Versuche zur Abhängigkeit der circadianen Rhythmik von der Atmungskettenenergie bei Kalanchoe blossfeldiana, Z. Pflanzenphysiol. 62:204–215.Google Scholar
  216. Steudle, E., and Zimmermann, U., 1974, Turgor pressure regulation in algal cells: pressure dependence of electrical parameters of the membrane in large pressure ranges. in: Membrane Transport in Plants (U. Zimmermann and J. Dainty, eds.), pp. 72–78, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  217. Steveninck, R. F. M. van, 1976, Effect of hormones and related substances on ion transport, in: Transport in Plants. Tissues and Organs (U. Liittge and M. G. Pitman, eds.), Vol. 2, Part B, pp. 319–321, Springer-Verlag, Berlin.Google Scholar
  218. Sturtevant, R. P., 1973a, Circadian variability in Klebsiella demonstrated by cosinor analysis, Int. J. Chronobiol. 1:141–146.Google Scholar
  219. Sturtevant, R. P., 1973b, Circadian patterns in linear growth of Escherichia coli, Anat. Rec. 175:453.Google Scholar
  220. Sundararajan, K. S., Subbaraj, R., Chandrashekaran, M. K., and Shanmugasundaram, S., 1978, Influence of fusaric acid on circadian leaf movement of the cotton plant, Gossypium hirsutum, Planta (Berlin) 144:111–112.CrossRefGoogle Scholar
  221. Sweeney, B. M., 1960, The photosynthetic rhythm in single cells of Gonyaulax polyedra, Cold Spring Harbor Symp. Quant. Biol. 25:145–148.CrossRefGoogle Scholar
  222. Sweeney, B. M., 1974a, A physiological model for circadian rhythms derived from the Acetabularia rhythm paradoxes, Intern. J. Chronobiol. 2:25–33.Google Scholar
  223. Sweeney, B. M., 1974b, The potassium content of Gonyaulax polyedra and phase changes in the circadian rhythm of stimulated bioluminescence by short exposures to ethanol and valinomycin, Plant Physiol. 53:337–342.CrossRefGoogle Scholar
  224. Sweeney, B. M., 1976a, Evidence that membranes are components of circadian oscillators, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 267–281, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  225. Sweeney, B. M., 1976b, Freeze-fracture studies of the thecal membranes of Gonyaulax polyedra: circadian changes in the particles of one membrane face, J. Cell Biol. 68:451–461.CrossRefGoogle Scholar
  226. Sweeney, B. M., 1976c, Pros and cons of the membrane model for circadian rhythms in the marine algae, Gonyaulax and Acetabularia, in: Biological Rhythms in the Marine Environment (P. J. De Coursey, ed.), pp. 63–76, University of South Carolina Press.Google Scholar
  227. Sweeney, B. M., and Herz, J. M., 1977, Evidence that membranes play an important role in circadian rhythms, in: Proc. 12th Intern. Symp. Intern. Soc. Chronobiol., Washington D.C., pp. 751–761, Il Ponte Publishers, Milano.Google Scholar
  228. Sweeney, B. M., Tuffli, C. F., and Rubin, R. H., 1967, The circadian rhythm in photosynthesis in Acetabularia in the presence of actinomycin D, puromycin, and chloramphenicol, J. Gen. Physiol. 50:647–659.CrossRefGoogle Scholar
  229. Taylor, W., and Hastings, J. W., 1979, Aldehydes phase shift the Gonyaulax clock, J. Comp. Physiol. 130:359–362.Google Scholar
  230. Taylor, W., Gooch, D. van, and Hastings, J. W., 1979, Period-shortening and phase-shifting effects of ethanol on the Gonyaulax glow rhythm, J. Comp. Physiol. 130:355–358.Google Scholar
  231. Träger, L., 1977, Steroidhormone. Biosynthese, Stoffwechsel, Wirkung., Springer-Verlag, Berlin.Google Scholar
  232. Tweedy, D. G., and Stephen, W. P., 1970, Light refractive emergence rhythm in leafcutter bee, Megachile rotundata (F) (Hymenoptera-Apoidea), Experientia 26:377–379.CrossRefGoogle Scholar
  233. Vanden Driessche, T., 1966a, Circadian rhythms in Acetabularia, photosynthetic capacity and chloroplast shape, Exp. Cell Res. 42:18–30.CrossRefGoogle Scholar
  234. Vanden Driessche, T., 1966b, The role of the nucleus in circadian rhythms of Acetabularia mediterranea, Biochim. Biophys. Act. 126:456–470.CrossRefGoogle Scholar
  235. Vanden Driessche, T., 1973, A population of oscillators: A working hypothesis and its compatility with the experimental evidence, Int. J. Chronobiol. 1:253–258.Google Scholar
  236. Vanden Driessche, T., 1975, Circadian rhythms and molecular biology, BioSystems 6:188–201.CrossRefGoogle Scholar
  237. Vanden Driessche, T., 1977, Regulation of circadian rhythmicity in Acetabularia: Morphactins as a tool for determining the role of the membranes, Nova Acta Leopold. 46:293–299.Google Scholar
  238. Vanden Dricssche, T., and Hars, R., 1972, Variations circadiennes de Infrastructure des chloroplastes d’Acetabularia, J. Microsc. 15:85–90.Google Scholar
  239. Wagner, E., 1976, Endogenous rhythmicity in energy metabolism: basis for timer-photoreceptor interactions in photoperiodic control, in: The Molecular Basis of Circadian Rhythms (J. W. Hastings and H. G. Schweiger, eds.), pp. 215–238, Dahlem Konferenzen, Abakon Verlagsgesellschaft, Berlin.Google Scholar
  240. Wagner, E., 1977, Molecular basis of physiological rhythms, Soc. Exp. Biol. 31:33–72.Google Scholar
  241. Wagner, E., and Gumming, B. G., 1970, Betacyanin accumulation, chlorophyll content, and flower initiation in Chenopodium rubrum as related to endogenous rhythmicity and phytochrome action, Can. J. Bot. 48:1–18.CrossRefGoogle Scholar
  242. Wever, R., 1975, Quantitative studies on the interaction between different circadian oscillators within the human multi-oscillator system, in: Proc. 12th Intern. Symp. Intern. Soc. Chronobiol., Washington D.G., pp. 751–761, Il Ponte Publishers, Milano.Google Scholar
  243. Wilkins, M. B., and Holowinsky, A. W., 1965, The occurrence of an endogenous circadian rhythm in a plant tissue culture, Plant Physiol. 40:907–909.CrossRefGoogle Scholar
  244. Winfree, A. T. 1970, Integrated view of resetting a circadian clock, J. Theor. Biol. 28:327–374.CrossRefGoogle Scholar
  245. Young, R. W., 1978, Visual cells, daily rhythms, and vision research, Vision Res. 18:573–578.CrossRefGoogle Scholar
  246. Zatz, M., 1978, A pharmacological approach to the circadian oscillator regulating rat pineal serotonin n-acetyltransferase activity, in: Naito International Symposium on Biorhythm and Its Central Mechanism, p. 25, Keidanren Kaikan, Tokyo, Japan.Google Scholar
  247. Zimmerman, N. H., and Menaker, M., 1979, The pineal gland: A pacemaker within the circadian system of the house sparrow, Proc. Nat. Acad. Sci. USA 76:999–1003.CrossRefGoogle Scholar
  248. Zimmermann, U., Steudle, E., and Lelkes, P. I., 1976, Turgor pressure regulation in Valonia utricular is: effect of cell wall elasticity and auxin, Plant Physiol. 58:608–613.CrossRefGoogle Scholar
  249. Zucker, I., 1978, Hormonal influences on hamster circadian rhythmicity, in: Naito International Symposium on Biorhythm and Its Central Mechanism, p. 57, Keidanren Kaikan, Tokyo, Japan.Google Scholar
  250. Zucker, I., Rusak, B., and King, R. G., 1975, Neural bases for circadian rhythms in rodent behavior, in: Advances in Psychobiology (G. Newton and A. H. Riesen, eds.), Wiley, New York.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Wolfgang Engelmann
    • 1
  • Martin Schrempf
    • 1
  1. 1.Department of BiologyUniversity of TübingenFederal Republic of Germany

Personalised recommendations