Quantum Transport Theory

  • J. R. Barker
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)


Boltzmann transport theory (BTT) is an ideal theory. It has the twin virtues of conceptual and mathematical simplicity. It also works far better than one could reasonably expect from its origin as a graft from the classical theory of dilute gases. Quantum transport theory (QTT) (Kohn and Luttinger, 1957, 1958; Kubo, 1957; Dresden, 1961; Chester, 1963; Kubo, 1966; Luttinger, 1968) enjoys no such status: it is neither conceptually nor mathematically simple; it is very hard to make it work; and it often reduces, after considerable labour, to the Boltzmann picture (Peierls, 1974; Cohen and Thirrig, 1973). But even if there were no manifestly quantum transport phenomena (and we might single out transport in quantizing magnetic fields, but equally: hopping conduction, impurity conduction, polaron transport, high-frequency transport, quasi-1 D transport, the Kondo effect, size limited transport, and of course superconductivity) (Barker, 1978, 1979), we would still require QTT as an ab initio theory to explain how the phenomenological BTT picture and its related concepts actually arise from the underlying framework of reversible quantum statistical mechanics. QTT is thus concerned with: (1) an explanatory and supportive theory for the Boltzmann picture, where that exists; (2) setting confidence limits for the application of BTT; (3) developing the necessary novel concepts and transport kinetics for genuine quantum transport phenomena (the latter may be loosely defined as those effects which depend explicitly on the quantum mechanical nature of the electron, and/or those processes for which the simple relaxive local Boltzmann description fails.


Density Matrix Wigner Distribution Momentum State Quantum Transport Electron Density Matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, J. R., 1973, J. Phys. C 6:2663.ADSCrossRefGoogle Scholar
  2. Barker, J. R., 1978a, Sol.-State Electronics 21:197.ADSCrossRefGoogle Scholar
  3. Barker, J. R., 1978b, Sol.-State Electronics 21:267.ADSCrossRefGoogle Scholar
  4. Barker, J. R., 1979a, in Opportunities for Microstructures Science, Engineering, and Technology Ed. by J. Ballantyne, Cornell Univ. Press, Ithaca, NY, 116.Google Scholar
  5. Barker, J. R., 1979b, in Handbook of Semiconductors, Ed. by W. Paul, North-Holland, Amsterdam, in press.Google Scholar
  6. Barker, J. R., and Ferry, D. K., 1979, Sol.-State Electr., in press.Google Scholar
  7. Chester, G. V., 1963, Rept. Prog. Phys. 26:411.ADSCrossRefGoogle Scholar
  8. Cohen, E., and Thirrig, W., Eds., 1973, The Boltzmann EquationActa Phys. Austr., Suppl. X.Google Scholar
  9. Dewel, G., 1969, Physica 44:120; 44:473.CrossRefGoogle Scholar
  10. Dresden, M., 1961, Rev. Mod. Phys. 33:265.MathSciNetADSMATHCrossRefGoogle Scholar
  11. Elliott, R. J., Leath, P. L., and Krumhansl, J. A., 1974, Rev. Mod. Phys. 46:465.MathSciNetADSCrossRefGoogle Scholar
  12. Ferry, D. K., and Barker, J. R., 1979a, Sol. State Commun. 30:361.ADSCrossRefGoogle Scholar
  13. Ferry, D. K., and Barker, J. R., 1979b, Sol.-State Electr., in press.Google Scholar
  14. Fujita, S., 1966, Non-equilibrium Statistical Mechanics, Saunders, San Francisco.MATHGoogle Scholar
  15. Gerhardt, R., and Hajdu, J., 1971, Z. Physik, 245:176.Google Scholar
  16. Gould, H. A., 1967, Lectures in Theoretical Physics IXC: Kinetic Theory Gordon and Breach, New York.Google Scholar
  17. Herbert, D. C., 1973, J. Phys. C 6:2788.ADSCrossRefGoogle Scholar
  18. Jaynes, E. T., 1967, in Proceedings of the Delaware Seminar on Foundations of Physics, Ed. by M. Bunge, Springer-Verlag, New York.Google Scholar
  19. Kalashnikov, V. P., 1970, Physica 48:93.MathSciNetADSCrossRefGoogle Scholar
  20. Kohn, W., and Luttinger, J. M., 1957, Phys. Rev. 108:590.MathSciNetADSMATHCrossRefGoogle Scholar
  21. Kohn, W., and Luttinger, J. M., 1958, Phys. Rev. 109:1892.MathSciNetADSMATHCrossRefGoogle Scholar
  22. Kubo, R., 1957, J. Phys. Soc. Jpn. 12:570.MathSciNetADSCrossRefGoogle Scholar
  23. Kubo, R., 1966, Rept. Prog. Phys. 29:225.ADSCrossRefGoogle Scholar
  24. Kubo, R., 1974, in Lecture Notes in Physics 31: Transport Phenomena Springer-Verlag, Berlin.Google Scholar
  25. Langer, J. S., 1960, Phys. Rev. 120:714.ADSMATHCrossRefGoogle Scholar
  26. Langer, J. S., 1961, Phys. Rev. 124:1003.ADSMATHCrossRefGoogle Scholar
  27. Langer, J. S., 1962, Phys. Rev. 127:5.ADSMATHCrossRefGoogle Scholar
  28. Lodder, A., and van Zuylen, H., 1970, Physica 50:524.ADSCrossRefGoogle Scholar
  29. Luttinger, J. M., 1968, Mathematical Methods in Solid State and Superfluid Physics Oliver and Boyd, New York.Google Scholar
  30. Martin, P. C., 1967, Phys. Rev. 161:143.ADSCrossRefGoogle Scholar
  31. Mori, H., 1965, Prog. Theor. Phys. 33:424.ADSCrossRefGoogle Scholar
  32. Peierls’, R., 1974, in Lecture Notes in Physics 31: Transport Phenomena Springer-Verlag, Berlin.Google Scholar
  33. Price, P. J., 1966, IBM J. Res. Develop. 10:395.MATHCrossRefGoogle Scholar
  34. Ron, A., 1963, J. Math. Phys. 4:1182.MathSciNetADSCrossRefGoogle Scholar
  35. Ron, A., 1964, Nuovo Cimento 34:1511.MathSciNetCrossRefGoogle Scholar
  36. Scott, C. H., and Moore, E. J., 1972, Physica 62:312.ADSCrossRefGoogle Scholar
  37. Stinchcombe, R. B., 1974, in Lecture Notes in Physics 31: Transport Phenomena, Springer-Verlag, Berlin.Google Scholar
  38. Thornber, K. K., 1978a, Sol.-State Electr. 21:259.ADSCrossRefGoogle Scholar
  39. Thornber, K. K., 1978b, in Path Integrals in Quantum, Statistical, and Solid-State Physics, Ed. by Devreese, J. T., and de Sitter, J., Plenum Press, New York.Google Scholar
  40. Thornber, K. K., and Feynman, R. P., 1970, Phys. Rev. B 1:4900.CrossRefGoogle Scholar
  41. Wigner, E. P., 1932, Phys. Rev. 40:749.ADSMATHCrossRefGoogle Scholar
  42. Zubarev, D. N., and Kalashnikov, V. P., 1970, Physica 46:550.MathSciNetADSMATHCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • J. R. Barker
    • 1
  1. 1.Physics DepartmentWarwick UniversityCoventryUK

Personalised recommendations