High Intensity Picosecond Photoexitation of Semiconductors

  • Arthur L. Smirl
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)


In the past half-decade, studies of the optical properties of high-density electron-hole plasmas, generated in undoped semicon ductors by the direct absorption of intense, ultrashort pulses from mode-locked lasers, have provided direct information concerning ultrafast electronic processes (the reader is referred to a previous chapter by Smirl, which reviews these studies, and to the Bibliography accompanying this paper). Generally, early experimental studies in this area employed mode-locked pulses, obtained from a Nd-glass laser, as an excitation source to generate the electron-hole plasma. This source produces optical pulses that are approximately 10 psec in duration and that often have peak powers in excess of 108 watts at a wavelength of 1.06 μm. These pulses when focused on the surface of a thin semiconductor sample can produce a measured irradiance of 10-2J/cm2. Direct absorption of such an optical pulse can create carier densities exceeding 1020cm-3. Germanium was chosen as a candidate for study, in many of these early investigations, primarily because it is a readily-available, well-characterized semiconductor whose bandgap energy is comparable to but less than the energy of a photon at a wavelength of 1.06 μm (1.17 eV).


Carrier Density Excitation Pulse Optical Pulse Probe Transmission Probe Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auston, D. H., McAfee, S., Shank, C. V., Ippen, E. P., and Teschke, O., 1978, Sol.-State Electr. 21:147.ADSCrossRefGoogle Scholar
  2. Auston, D. H., and Shank, C. V., 1974, P. Rev. Letters 32:1120,ADSCrossRefGoogle Scholar
  3. Auston, D. H., Shank, C. V., and LeFur, P., 1975, Pys. Rev. Letters 35:1022.ADSCrossRefGoogle Scholar
  4. Bessey, J. S., Bosacchi, B., van Driel, H. M., and Smirl, A. L., 1978, Phys. Rev. B 17:2782.ADSCrossRefGoogle Scholar
  5. Elci, A., Scully, M. O., Smirl, A. L., and Matter, J. C, 1977, Phys. Rev. B 16:191.ADSCrossRefGoogle Scholar
  6. Elci, A., Smirl, A. L., Leung, C. Y., and Scully, M. O., 1978, Sol.-State Electr. 21:151.ADSCrossRefGoogle Scholar
  7. Kennedy, C. J., Matter, J. C., Smirl, A. L., Weichel, H., Hopf, F. A., Pappu, S. V., and Scully, M. O., 1974, Phys. Rev. Letters 32:419.ADSCrossRefGoogle Scholar
  8. Latham, W. P., Jr., Smirl, A. L., Elci, A., and Bessey, J. S., 1978, Sol.-State Electr. 21:151.CrossRefGoogle Scholar
  9. Leung, T. C. Y., 1978, Dissertation, unpublished.Google Scholar
  10. Shank, C. V., and Auston, D. H., 1975, Phys. Rev. Letters 30:479.ADSCrossRefGoogle Scholar
  11. Shank, C. V., Fork, R. L., Leheny, R. F., and Shah, J., 1979, Phys. Rev. Letters 42:112:ADSCrossRefGoogle Scholar
  12. Shank, C. V., Ippen, E. P., and Shapiro, S. L., 1978, “Picosecond Phenomena,” Springer-Verlag, Berlin.CrossRefGoogle Scholar
  13. Smirl, A. L., Lindle, J. R., and Moss, S. C., 1978, Phys. Rev. B 18:5489.ADSCrossRefGoogle Scholar
  14. Smirl, A. L., Matter, J. C., Elci, A., and Scully, M. O., 1976, Optics Commun. 16:118.ADSCrossRefGoogle Scholar
  15. von der Linde, D., 1977, “Ultrashort Light Pulses: Picosecond Techniques and Applications,” Ed. by S. L. Shapiro, Springer-Verlag, Berlin.Google Scholar
  16. von der Linde, D., and Lambrich, R., 1979, Phys. Rev. Letters, 42:1090.ADSCrossRefGoogle Scholar
  17. van Driel, H. M., 1979, to be published.Google Scholar
  18. van Driel, H. M., Bessey, J. S., and Hanson, R. C., 1977, Optics Commun. 22:346.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Arthur L. Smirl
    • 1
  1. 1.North Texas State UniversityDentonUSA

Personalised recommendations