Advertisement

The Physics of Nonlinear Absorption and Ultrafast Carrier Relaxation in Semiconductors

  • Arthur L. Smirl
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)

Abstract

The absorption of light quanta of energy greater than the band gap in a semiconductor induces an electron to make a transition from the valence band to a state high in the conduction band, leaving behind a hole in the valence band (Fig. 1). After such an absorption process, the photoexcited electron is left with an excess energy ΔEe that is given by
$${E_e} = (h\nu -{E_g}){(1 + {m_e}/{m_h})^{ -1}},$$
(1)
where me is the electron effective mass and mh is the hole effective mass. The excess energy of the photogenerated hole is
$${E_h} = (h\nu -{{\rm E}_g}) -{E_e}.$$
(2)
These energetic electrons (holes) will quickly relax through various collisional processes to the bottom (top) of the conduction (valence) band, where eventually they will recombine. It is well established that if the photoexcitation is sufficiently intense this relaxation process results in the generation of hot electron and phonon distributions.

Keywords

Carrier Density Excitation Pulse Probe Transmission Probe Pulse Auger Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Auston, D. H., McAfee, S., Shank, C. V., Ippen, E. P., and Teschke, O., 1978, Sol.-State Electr. 21:147.ADSCrossRefGoogle Scholar
  2. Auston, D. H., and Shank, C. V., 1974, Phys. Rev. 32:1120.ADSGoogle Scholar
  3. Auston, D. H., Shank, C. V., and Lefur, P., 1975, Phys. Rev. Letters 35:1022.ADSCrossRefGoogle Scholar
  4. Bauer, G., 1974, in Springer Tracts in Modern Physics, Vol. 74, Springer-Verlag, Berlin.Google Scholar
  5. Bauer, G., 1976, in Linear and Nonlinear Electron Transport in Solids, Ed. by J. T. DeVreese and H. van Doren, Plenum, New York.Google Scholar
  6. Cardona, M., 1963, J. Phys. Chem. Sol. 24:1543.ADSCrossRefGoogle Scholar
  7. Cardona, M., and Pollak, F. H., 1966, Phys. Rev. 142:530.ADSCrossRefGoogle Scholar
  8. Conradt, R., and Aengenheister, J., 1972, Sol. State Commun. 10:321.ADSCrossRefGoogle Scholar
  9. Conwell, E. M., 1967, High Field Transport in Semiconductors, AcademiG Press, New York.Google Scholar
  10. Costato, M., Fontanesi, S., and Reggiani, L., 1973, J. Phys. Chem. Sol. 34:547.ADSCrossRefGoogle Scholar
  11. Dash, W. C., and Newman, R., 1955, Phys. Rev. 99:1151.ADSCrossRefGoogle Scholar
  12. de Veer, S. M., and Meyer, H. J. G., 1962, in Proc. 6th Intern. Conf. Phys. Semiconductors, Exeter Inst, of Phys., London.Google Scholar
  13. Elci, A., Scully, M. O., Smirl, A. L., and Matter, J. C., 1977, Phys. Rev. B 16:191.ADSCrossRefGoogle Scholar
  14. Fawcett, W., 1965, Proc. Phys. Soc. 85:931.ADSCrossRefGoogle Scholar
  15. Fawcett, W., and Paige, E. G. S., 1971, J. Phys. C. 4:1801.ADSCrossRefGoogle Scholar
  16. Fetry, D. K., 1978, Phys. Rev. B 18:7033.ADSCrossRefGoogle Scholar
  17. Haas, C., 1962, Phys. Rev. 125:1965.ADSCrossRefGoogle Scholar
  18. Herbert, D. C., Fawcett, W., Lettington, A. H., and Jones, D., 1972, in Proc. 11th Intern. Conf. Phys. Semiconductors, Warsaw.Google Scholar
  19. Ito, R., Kawamura, H., and Fukai, M., 1964, Phys. Letters 13:26.ADSCrossRefGoogle Scholar
  20. orgensen, M. H., 1967, Phys. Rev. 156:834.ADSCrossRefGoogle Scholar
  21. Jorgenson, M. H., Meyer, N. I., and Schmidt-Teidemann, K. J., 1964, in Proc. 7th Intern. Conf. Phys. Semiconductors, Paris, Academic Press, New York,Google Scholar
  22. Kennedy, C. J., Matter, J. C., Smirl, A. L., Weichel, H., Hopf, F. A., and Pappu, S. V., 1974, Phys. Rev. Letters 32:419. Latham, W. P., Jr., Smirl, A. L., Elci, A., and Bessey, J.S., 1978, Sol.-State Electr. 21:159.Google Scholar
  23. Leite, R. C. C., 1978, Sol.-State Electr. 21:177.ADSCrossRefGoogle Scholar
  24. Leung, T. C. Y., 1978, Dissertation, unpublished.Google Scholar
  25. Lindle, J. R., Moss, S. C., and Smirl, A. L., 1979, to be published.Google Scholar
  26. Meyer, H. J. G., 1958, Phys. Rev. 112:298.ADSCrossRefGoogle Scholar
  27. Reik, H. S., and Risken, H., 1962, Phys. Rev. 126:1737.ADSMATHCrossRefGoogle Scholar
  28. Safran, S., and Lax, B., 1975, J. Phys. Chem. Sol. 36:753.ADSCrossRefGoogle Scholar
  29. Seeger, K., 1973, Semiconductor Physics Springer-Verlag, Berlin.Google Scholar
  30. Shah, J., 1978, Sol. State Electr. 21:43.ADSCrossRefGoogle Scholar
  31. Shank, C. V., and Auston, D. H., 1975, Phys. Rev. Letters 34:479.ADSCrossRefGoogle Scholar
  32. Shank, C. V., Ippen, E. P., and Shapiro, S. L., 1978, Picosecond Phenomena, Springer-Verlag, Berlin.CrossRefGoogle Scholar
  33. Shapiro, S. L., 1977, Ultrashort Light Pulses: Picosecond Techniques and Applications, Springer-Verlag, Berlin.Google Scholar
  34. Shelton, J. W., and Armstrong, J. A., 1967, IEEE J. Quantum Electr. QE-3:696.Google Scholar
  35. Smirl, A. L., Matter, J. C., Elci, A., and Scully, M. O., 1976, Optics Commun. 16:118. Ulbrich, R. G., 1973, Phys. Rev. B8:5719.Google Scholar
  36. Ulbrich, R. G., 1978, Sol.-State Electr. 21:51.ADSCrossRefGoogle Scholar
  37. van Borzeszkowski, J., 1974, Phys. Stat. Sol. (b) 61:607.ADSCrossRefGoogle Scholar
  38. van Driel, H. M., Bessey, J. S., and Hansen, R. C., 1977, Optics Commun. 22:346.ADSCrossRefGoogle Scholar
  39. van Driel, H. M., Elci, A., Bessey, J. S., and Scully, M. O., 1976, Optics Commun. 20:837.Google Scholar
  40. Weisbuch, C., 1978, Sol.-State Electr. 21:179.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • Arthur L. Smirl
    • 1
  1. 1.North Texas State UniversityDentonUSA

Personalised recommendations