Advertisement

Hot Electron Distribution Function in Quantizing Magnetic Fields

  • D. Calecki
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)

Abstract

The successful generation of strong magnetic fields has made it possible to investigate experimentally hot electrons in semiconduc tors under conditions of quantization of their orbital motion. Such magnetic fields B are called “quantizing fields”; they alter significantly the field free electronic energy spectrum. The electron motion in the plane perpendicular to B is quantized is. Landau states and the remaining degree of freedom of motion along B constitutes one-dimensional subbands, each of which is associated with one of the Landau states [Landau (1930)]. Moreover, the electronic density of states has an oscillatory structure with divergences characteristic of the one dimensional motion.

Keywords

Electron Temperature Master Equation Optical Phonon Landau Level Electron Distribution Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Agaeva, R. G., Askerov, B. M., and Gashimzade, F. M., 1976, Sov.-Phys. Semicond. 10:1268.Google Scholar
  2. Barker, J. R., 1978, Sol.-State Electr. 21:197.ADSCrossRefGoogle Scholar
  3. Budd, H. F., 1968, Phys. Rev. 175:241.ADSCrossRefGoogle Scholar
  4. Calecki, D., 1971, J. Phys. Chem. Solids 32:1835.ADSCrossRefGoogle Scholar
  5. Calecki, D., 1972, J. Phys. Chem. Solids 33:379.ADSCrossRefGoogle Scholar
  6. Calecki, D., Lewiner, C., and Nozieres, P., 1977, J. de Phys. 38:169.CrossRefGoogle Scholar
  7. Cassiday, D. R., and Spector, H. N., 1974, J. Phys. Chem. Sol. 35:957.ADSCrossRefGoogle Scholar
  8. Elesin, V. F., 1969, Sov. Phys. JETP 28:410.ADSGoogle Scholar
  9. Inoue, S., and Yamashita, J., 1969, Prog. Theor. Phys. 42:158.ADSCrossRefGoogle Scholar
  10. Kalashnikov, V. P., and Pomortsev, R. V., 1964, Fiz. Metal. Metallov. 17:343.Google Scholar
  11. Kazarinov, R. F., and Skobov, V. G., 1962, Sov. Phys. JETP 15:726.MATHGoogle Scholar
  12. Kazarinov, R. F., and Skobov, V. G., 1963, Sov. Phys. JETP 17:921.Google Scholar
  13. Kogan, Sh. M., 1963, Sov. Phys. Sol.-State 4:1813.Google Scholar
  14. Kogan, Sh. M., Shadrin, V. D., and Shul’man, A. Ya., 1976, Sov. Phys. Sol.-State 41:686.ADSGoogle Scholar
  15. Kohn, W., and Luttinger, J. M., 1957, Phys. Rev. 108:590.MathSciNetADSMATHCrossRefGoogle Scholar
  16. Kubo, R., Miyake, S., and Hashitsume, N., 1965, Solid-State Physics, Academic Press, New York.Google Scholar
  17. Kurosawa, T., 1965, J. Phys. Soc. Jpn., 20:937.ADSCrossRefGoogle Scholar
  18. Landau, L. D., 1930, Z. Physik 64:629.ADSCrossRefGoogle Scholar
  19. Licea, I., 1971, Z. Physik 249:115ADSCrossRefGoogle Scholar
  20. Magarill, L. I., and Savvinykh, S. K., 1970, Sov. Phys. JETP 30:1128.ADSGoogle Scholar
  21. Miyazawa , H., 1969, J. Phys. Soc. Jpn. 26:700.ADSCrossRefGoogle Scholar
  22. Parti, H., Muller, W., Kohl, F., and Gornik, E., 1978, J. Phys. C 11:1091.ADSCrossRefGoogle Scholar
  23. Pinchuk, I. I., 1977, Sov. Phys. Sol.-State 19:383.Google Scholar
  24. Pomortsev, R. V., and Kharus, G. I., 1967, Sov. Phys. Sol.-State 9:1150.Google Scholar
  25. Pomortsev, R. V., and Kharus, G. I., 1968, Sov. Phys. Sol.-State 9:2256.Google Scholar
  26. Shadrin, V. D., 1976, Sov. Phys. Semlcond. 10:500.Google Scholar
  27. Titeica, S., 1935, Ann. der Physik 22:129.MATHCrossRefGoogle Scholar
  28. Van Hove, L., 1955, Physica 21:517.MathSciNetMATHCrossRefGoogle Scholar
  29. Van Hove, L., 1957, Physica 23:441.MathSciNetADSMATHCrossRefGoogle Scholar
  30. Yamada, E., and Kurosawa, T., 1973, J. Phys. Soc. Jpn. 34:603.ADSCrossRefGoogle Scholar
  31. Yamashita, J., 1965, Prog. Theor. Phys. 33:343.ADSMATHCrossRefGoogle Scholar
  32. Zlobin, A. M., and Zyrianov, P. S., 1970, Sov. Phys. JETP 31:513.ADSGoogle Scholar
  33. Zlobin, A. M., and Zyrianov, P. S., 1972, Sov. Phys. Uspekhi 14:379.ADSCrossRefGoogle Scholar
  34. Zwanzig, R., Montroll, E., and Argyres, P., 1961, in Lectures in Theor. Phys. 3:106; 8a:183, Intern. Publishers.Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. Calecki
    • 1
  1. 1.Groupe de Physique des Solides de l’Ecole Normale SupérieureUniversité de Paris VIIFrance

Personalised recommendations