Advertisement

Hot-Electron Transport in Quantizing Magnetic Fields

  • R. J. Nicholas
  • J. C. Portal
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)

Abstract

The influence of a magnetic field upon the electrons and holes in metals and semiconductors is to quantize the energies of electrons into a set of Landau levels. This quantization can lead to several striking quantum effects in the electrical transport properties at high magnetic fields. When the carrier concentration is sufficiently high that a constant, well defined, Fermi energy exists within the conduction or valence band at low temperatures (e.g. in a heavily doped, degenerate semiconductor), then there is an oscillatory varia tion of the conductivity with magnetic field; the Shubnikov-de Haas effect. Oscillations occur as the Fermi level passes through the high density of states at the edge of each Landau level, while the amplitude of these oscillations is a strong function of temperature. Section 2 describes how this temperature dependence may then be used to investigate the temperature of the electron gas in cases where this is not the same as the lattice temperature. Provided that the electron gas may be described by a Maxwellian distribution function with a characteristic temperature Te, then this method may be used to study the electron temperature as a function of the electric field, time, and also of the magnetic field.

Keywords

High Magnetic Field Landau Level Energy Relaxation Electron Distribution Function Energy Loss Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, E. N., and Holstein, T. D., (1959), J. Phys. Chem. Solids 10:254.ADSCrossRefGoogle Scholar
  2. Argyres, P. N., (1959), J. Phys. Chem. Solids 4:19.MathSciNetADSCrossRefGoogle Scholar
  3. Barker, J. R., and Magnussen, B., (1974), Proc. 12th Int. Conf. on Physics of Semiconductors Stuttgart, p. 811.Google Scholar
  4. Bauer, G., and Kahlert, H., (1970), Proc. 10th Int. Conf. on Physics of Semiconductors Boston, p. 65.Google Scholar
  5. Bauer, G., and Kahlert, H., (1972), Phys. Rev. B 5:566.ADSCrossRefGoogle Scholar
  6. Bauer, G., Kahlert, H., and Kocevar, P., (1975), Phys. Rev. B 11:968.ADSCrossRefGoogle Scholar
  7. Bir, G. L., Krigel, V. G., Pikus, G. E., and Farbstein, I. I., (1974), Z . Eksp. Teor. Fiz. Pis. Red. 19:48 (JETP Lett. 19–20: 29.Google Scholar
  8. Couder, Y., (1969), Phys. Rev. Lett. 22:890.ADSCrossRefGoogle Scholar
  9. Couder, Y., Hulin, M., and Thomé, H., (1973), Phys. Rev. B 7:4373.ADSCrossRefGoogle Scholar
  10. Dolat, V., and Bray, R., (1970) Phys. Rev. Lett. 24:262.ADSCrossRefGoogle Scholar
  11. Dolling, G., (1963), Inelastic Scattering of Neutrons in Solids and Liquids I.A.E.A., Vienna, p. 37 (Vol. 2).Google Scholar
  12. Dorda, G., (1975), Festkörperprobleme XIII Springer-Verlag, Berlin, p. 215.Google Scholar
  13. Eaves, L., Hoult, R. A., Stradling, R. A., Tidy, R. J., Portal, J. C., and Askenazy, S., (1975), J. Phys. C 8:1034.ADSCrossRefGoogle Scholar
  14. Eaves, L., and Portal, J. C., (1979), J. Phys. C., to be published.Google Scholar
  15. Eaves, L., Portal, J. C., Askenazy, S., Stradling, R. A., and Hansen, K., (1974a), Solid State Commun. 15: 1281.ADSCrossRefGoogle Scholar
  16. Eaves, L., Stradling, R. A., Askenazy, S., Barbaste, R., Carrere, C., Leotin, J., Portal, J. C., and Ulmet, J. R., (1974b), J. Phys. C 7:1999.ADSCrossRefGoogle Scholar
  17. Eaves, L., Stradling, R. A., and Wood, R. A., (1970), Proc. 10th Int. Conf. on Physics of Semiconductors Boston, p. 816.Google Scholar
  18. Gantmakher, V. F., and Zverev, V. N., (1975), Z . Eksp. Teor. Fiz. 69:695 (Sov. Phys. JETP 42:352).Google Scholar
  19. Gantmakher, V. F., and Zverev, V. N., (1976a), Zh. Eksp. Teor. Fiz. 70:1891 (Sov. Phys. JETP 43:985).Google Scholar
  20. Gantmakher, V. F., and Zverev, V. N., (1976b), Proc. Int. Conf. on Physics of Semiconductors Rome, pp. 1154–7.Google Scholar
  21. Gantmakher, V. F., and Zverev, V. N., (1976c), Zh. Eksp. Teor. Fiz. 71:2314 (Sov. Phys. JETP 44:1220).Google Scholar
  22. Gantmakher, V. F., and Zverev, V. N., (1977a), Pis’ma Zh. Eksp. Teor. Fiz. 25:44 (JETP Lett. 25:39).Google Scholar
  23. Gantmakher, V. F., and Zverev, V. N., (1977b), Zh. Eksp. Teor. Fiz. 73:2337 (Sov. Phys. JETP 46:1223).Google Scholar
  24. Haller, E. E., and Hansen, W. L., (1974), Solid State Comm. 15:687.ADSCrossRefGoogle Scholar
  25. Hamaguchi, C., Shirakawa, T., Yamashita, T., and Nakai, J., (1972), Phys. Rev. Lett. 28:1129.ADSCrossRefGoogle Scholar
  26. Harper, P. G., Hodby, J. W., and Stradling, R. A., (1973), Rep. Prog. Phys. 37:1. Hess, K., Englert, T., Neugebauer, T., Landwehr, G., and Dorda, G., (1977), Phys. Rev. B 16:3652.Google Scholar
  27. Hoult, R. A., (1974), Thesis, unpublished.Google Scholar
  28. Instone, T., Eaves, L., Portal, J. C., Houlbert, C., Perrier, P., and Askenazy, S., (1977), J. Phys. C 10:1585.CrossRefGoogle Scholar
  29. Kahlert, H., and Bauer, G., (1973), Phys. Rev. B 7:2670.ADSCrossRefGoogle Scholar
  30. von Klitzing, K., (1974), Solid State Comm. 15:1721.ADSCrossRefGoogle Scholar
  31. von Klitzing, K., (1978), Solid State Electr. 21:223.ADSCrossRefGoogle Scholar
  32. Kubo, R., Mikaye, S. J., and Hashitsume, N., (1965), Solid State Physics New York, Academic Press, 17:269.Google Scholar
  33. Morita, S., Takano, S., and Kawamura, H., (1973), Solid State Comm. 12:175.ADSCrossRefGoogle Scholar
  34. Nicholas, R. J., and Stradling, R. A., (1976), J. Phys. C 9:1253.ADSCrossRefGoogle Scholar
  35. Nicholas, R. J., and Stradling, R. A., (1978), J. Phys. C 11:L783.Google Scholar
  36. Parfenev, R., Farbshkin, I. I., and Shalyt, S., (1967), Sov. Phys. JETP 26:906.ADSGoogle Scholar
  37. Portal, J. C., Eaves, L., Askenazy, S., and Stradling, R. A., (1974), Solid State Comm. 14:1241.ADSCrossRefGoogle Scholar
  38. Portal, J. C., Perrier, P., Houlbert, C., Askenazy, S., Nicholas, R. J., and Stradling, R. A., (1979), J. Phys. C, to be published.Google Scholar
  39. Skolnick, M. S., Eaves, L., Stradling, R. A., Portal, J. C., and Askenazy, S., (1974), Solid State Comm. 15:1403.ADSCrossRefGoogle Scholar
  40. Stradling, R. A., Eaves, L., Hoult, R. A., Mears, A. L., and Wood, R. A., (1970), Proc. 10th Int. Conf. on Physics of Semi conductors Boston, p.369.Google Scholar
  41. Stradling, R. A., and Wood, R. A., (1968), Solid State Comm. 6:701.ADSCrossRefGoogle Scholar
  42. Stradling, R. A., and Wood, R. A., (1970), J. Phys. C 3:2425.ADSCrossRefGoogle Scholar
  43. Stratton, R., (1958), Proc. Roy. Soc. (London) A246:406.Google Scholar
  44. Streitwolf, N. H., (1970), Phys. Stat. Solidi 37:K47.Google Scholar
  45. Wallace, P. R., and Joos, B., (1978), J. Phys. C 11:303.ADSCrossRefGoogle Scholar
  46. Yamada, Y., (1974), Solid State Comm. 13:503.ADSCrossRefGoogle Scholar
  47. Yamada, Y., and Kurosawa, T., (1973), J. Phys. Soc. Jpn. 34:603.ADSCrossRefGoogle Scholar
  48. Zverev, V. N., (1977), Fiz. Tverd. Tela, 19:2015 (Sov. Phys. Solid State, 19:1179).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • R. J. Nicholas
    • 1
  • J. C. Portal
    • 2
  1. 1.Clarendon LaboratoryOxfordEngland
  2. 2.Department de PhysiqueI.N.S.A.Toulouse CedexFrance

Personalised recommendations