Phenomenological Physics of Hot Carriers in Semiconductors

Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 52)


Preparing a review on a topic developing as rapidly as nonlinear transport is a complicated problem. The material should be comprehensive for those new in the field and at the same time interesting in the sense that the basic principles are covered in the most efficient form. Also future applications should be pointed out whenever possible. In the past, the largest impetus to hot electron research came from device applications such as transistor characteristics, interface transport, and above all the Gunn effect. It is easy enough to guess that the largest impact in the future will come from very large scale integration (VLSI), which necessarily involves high electric fields, and from studies of multilayer heterojunction structures. It is not clear which of the hot electron effects will be important for these applications. Current device concepts are based on drift, diffusion, and generation-recombination. Therefore, I will concentrate in this review on the effects of hot electrons arising from these three basic mechanisms. It is my intention not only to give an introduction to hot carrier effects, but also to supply a complete “recipe” on how hot carrier effects can be calculated within the so-called carrier temperature model. In addition, I will discuss the cases of the largest deviations from this model.


Optical Phonon Acoustic Phonon High Electric Field Negative Differential Resistance Very Large Scale Integration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asche, M. and Borzeskowski, J. V., 1970, Phys. Stat. Sol. 37:433.ADSCrossRefGoogle Scholar
  2. Baraff, G. A., 1962, Phys. Rev. 128:2507.ADSMATHCrossRefGoogle Scholar
  3. Butcher, P. N., and Fawcett, W., 1966, Phys. Letters 21:489.ADSCrossRefGoogle Scholar
  4. Conwell, E. M., 1967,High Field Transport in Semiconductors, Academic Press, New York.Google Scholar
  5. Dumke, W. P., 1967, Phys. Rev. 167:783.ADSCrossRefGoogle Scholar
  6. Fang, F., and Fowler, A. B., 1970, Phys. Rev. 41:1825Google Scholar
  7. Ferry, D. K., 1976, Phys. Rev. B14:5364.ADSCrossRefGoogle Scholar
  8. Ferry, D. K., 1978, Sol.-State Electr. 21:115.ADSCrossRefGoogle Scholar
  9. Goetzberger, A., McDonald, B., Haitz, R. H., and Scarlett, R. M., 1963, J. Appl. Phys. 34:1591.ADSCrossRefGoogle Scholar
  10. Gunn, J. B., 1963, Sol. State Commun. 1:88.ADSCrossRefGoogle Scholar
  11. Heinrich, H., and Jantsch, W., 1976, Phys. Letters 57A:485.ADSCrossRefGoogle Scholar
  12. Heinrich, H., and Kriechbaum, M., 1970, J. Phys. Chem. Sol. 31:927.ADSCrossRefGoogle Scholar
  13. Heinrich, H., Jantsch, W., and Rozenbergs, J., 1975, Sol. State Commun. 17:1145.ADSCrossRefGoogle Scholar
  14. Hess, K., 1975, Sol. State Commun. 17:157.ADSCrossRefGoogle Scholar
  15. Hess, K., 1978, Sol.-State Electr. 21:123.ADSCrossRefGoogle Scholar
  16. Hess, K., Neugebauer, T., Englert, T., Landwehr, G., and Dorda, G., 1977, Phys. Rev. B16:3652.ADSCrossRefGoogle Scholar
  17. Hess, K., and Sah, C. T., 1974, Phys. Rev. B10:3375.ADSCrossRefGoogle Scholar
  18. Hess, K., and Sah, C. T., 1975, Sol.-State Electr. 18:667.ADSCrossRefGoogle Scholar
  19. Hess, K., and Sah, C. T., 1978, IEEE Trans. Electr. Dev. ED-25:1399.Google Scholar
  20. Hess, K., and Vogl, P., 1979, Sol. State Commun., in press.Google Scholar
  21. Hilsum, C., 1962, Proc. IRE 50:185.CrossRefGoogle Scholar
  22. Holonyak, N., Jr., Kolbas, R. M., Laidig, W. D., Dupuis, R. D., and Dapkus, P. D., Appl. Phys. Letters 34:501.Google Scholar
  23. Jacoboni, C., Canali, C., Ottaviani, G., and Albiergi-Quaranta, A. A., 1977, Sol.-State Electr. 20:77–.ADSCrossRefGoogle Scholar
  24. Kolbas, R. M., Holonyak, N., Jr., Vojak, B. A., Hess, K., Altarelli, M., Dupuis, R. D., and Dapkus, P. D., 1979, Sol.-State Commun., in press.Google Scholar
  25. Lax, M., 1960, Phys. Rev. 119:1502.ADSCrossRefGoogle Scholar
  26. Littlejohn, M. A., Hauser, J. R., Glisson, T., Ferry, D. K., and Harrison, J. W., 1978, Sol.-State Electr. 21:107.ADSCrossRefGoogle Scholar
  27. McCumber, D. E., andChynoweth, A. G., 1966, IEEE Trans. Electr. Dev. ED-13:4.Google Scholar
  28. Ning, T., 1978, Sol.-State Electr. 21:273.ADSCrossRefGoogle Scholar
  29. Ridley, B. K., and Watkins, T. B., 1961, Proc. Phys. Soc. 78:293.ADSCrossRefGoogle Scholar
  30. Ruch, J. G., and Kino, G. S., 1967, Appl. Phys. Letters 10:40.ADSCrossRefGoogle Scholar
  31. Ryder, E. J., 1953, Phys. Rev. 90:766.ADSCrossRefGoogle Scholar
  32. Sah, C. T., 1976, Sol.-State Electr. 19:975.ADSCrossRefGoogle Scholar
  33. Sasaki, W., Shibuya, M., and Mizuguchi, K., 1958, J. Phys. Soc. Jpn. 13:465.ADSCrossRefGoogle Scholar
  34. Seeger, K. H., 1973, Semiconductor Physics, Springer-Wien, New York.Google Scholar
  35. Shah, J., 1978, Sol.-State Electr. 21:43.ADSCrossRefGoogle Scholar
  36. Shockley, W., 1961, Sol.-State Electr. 2:36.ADSGoogle Scholar
  37. Sze, S. M., 1969, Physics of Semiconductors and Semiconductor Devices, Wiley-Interscience, New York.Google Scholar
  38. Wolff, P. A., 1954, Phys. Rev. 95:1415.ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • K. Hess
    • 1
  1. 1.Department of Electrical Engineering and Coordinated Science LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations