Hydrodynamic Properties of Dilute and Concentrated Polymer Latexes: a Study by Quasielastic Light Scattering

  • D. R. Bauer


The concentration dependence of the translational diffusion coefficient of monodisperse latex spheres has been measured by quasielastic light scattering over the range 0–10%. In very dilute solution, the diffusion coefficient is accurately given by the Stokes-Einstein equation. The diffusion coefficient increases rapidly by up to 30% over the concentration range 0.0 to 0.1%. This rise is attributed to latex charge repulsion and qualitative agreement is found with the theory of M. J. Stephen (J. Chem. Phys., 55, 3878 (1971)). At higher concentration, hard sphere excluded volume and frictional effects become important. By combining the diffusion coefficient with integrated intensity measurements, both the concentration and scattering vector dependences of the friction coefficient have been determined. It has been found that the friction coefficient, f, can be expanded as f = fo (1 + Kf (qd) ϕ + …) where Kf is a function of the product of the scattering vector, q, and the latex diameter, d, and ϕ is the volume fraction of latex. Values of Kf decrease from 6.1 at qd 0 to 0 at qd ≥ 6. The value at qd = 0 is in good agreement with calculated values.


Diffusion Coefficient Friction Coefficient Concentration Dependence Multiple Scattering Hard Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Chu, Ann. Rev. Phys. Chem., 21 145 (1970).CrossRefGoogle Scholar
  2. 2.
    B. J. Berne and R. Pecora, Ann. Rev. Phys. Chem., 25233 (1974).CrossRefGoogle Scholar
  3. 3.
    B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, John Wiley and Sons, Inc., New York, 1976.Google Scholar
  4. 4.
    H. Z. Cummins and E. R. Pike, ed., Photon Correlation and Light Beating Spectroscopy, Plenum Press, New York, 1974.Google Scholar
  5. 5.
    D. R. Bauer, J. I. Brauman, and R. Pecora, Ann. Rev. Phys. Chem., 27443 (1976).CrossRefGoogle Scholar
  6. 6.
    P. C. Killgoar, Jr. and R. A. Dickie, J. App. Poly. Sci., 21, 1813 (1977).Google Scholar
  7. 7.
    C. Tanford, Physical Chemistry of Macromolecules, John Wiley and Sons, Inc., New York, 1961.Google Scholar
  8. 8.
    M. J. Stephen, J. Chem. Phys., 55, 3878 (1971).Google Scholar
  9. 9.
    P. Doherty and G. B. Benedek, J. Chem. Phys., 61, 5926 (1974).Google Scholar
  10. 10.
    G. D. J. Phillies, J. Chem. Phys., 60, 976 (1974);Google Scholar
  11. G. D. J. Phillies, J. Chem. Phys., 62, 3925 (1975).Google Scholar
  12. 11.
    G. D. J. Phillies, G. B. Benedek and N. A. Mazur, J. Chem. Phys., 65, 1883 (1976).Google Scholar
  13. 12.
    A. R. Altenberger and J. M. Deutch, J. Chem. Phys., 59, 894 (1973).Google Scholar
  14. 13.
    R. Pecora, J. Chem. Phys., 40, 1604 (1964).Google Scholar
  15. 14.
    T. L. Hill, An Introduction to Thermodynamics, Addison Wesley, Reading, Mass., 1960.Google Scholar
  16. 15.
    K. A. Stacey, Light Scattering in Physical Chemistry, Butterworth, London, 1956.Google Scholar
  17. 16.
    J. M. Burgers, Proc. Acad. Sci. Amst., 44, 1045 (1941);Google Scholar
  18. J. M. Burgers, Proc. Acad. Sci. Amst., 15, 926 (1942).Google Scholar
  19. 17.
    C. W. Pyun and M. Fixman, J. Chem. Phys., 41, 937 (1964).Google Scholar
  20. 18.
    G. K. Batchelor, J. Fluid Mech., 52, 245 (1972).CrossRefGoogle Scholar
  21. 19.
    S. A. Adelman, J. Chem. Phys., 68, 49 (1978).Google Scholar
  22. 20.
    K. F. Freed and S. F. Edwards, J. Chem. Phys., 65, 4103 (1976).Google Scholar
  23. 21.
    M. P. Cheung and R. A. Dickie, U. S. Patent No. 3,926,888, issued December 16, 1975.Google Scholar
  24. 22.
    H. Z. Cummins, N. Knable and Y. Yeh, Phys. Rev. Lett., 12, 150 (1964).CrossRefGoogle Scholar
  25. 23.
    D. W. Schaefer and B. J. Berne, Phys. Rev. Lett., 32, 1110 (1974).CrossRefGoogle Scholar
  26. 24.
    P. N. Pusey, D. W. Schaeffer, D. E. Koppel, R. D. Camerini-Otero and R. M. Franklin, J. Phys. Paris, 33, C1, 163 (1972).Google Scholar
  27. 25.
    J. W. Vanderhoff and H. J. van den Hul, J. Macromol. Sci., Chem. 7, 677 (1973).Google Scholar
  28. 26.
    F. Zernicke and J. A. Prins, Z. Physik, 41, 184 (1927).CrossRefGoogle Scholar
  29. 27.
    P. Doty and R. F. Steiner, J. Chem. Phys., 17, 743 (1949);Google Scholar
  30. P. Doty and R. F. Steiner, J. Chem. Phys., 20, 85 (1952).Google Scholar
  31. 28.
    W. J. Pangonis and W. Heller, Angular Scattering Functions for Spherical Particles, Wayne State Press, Detroit, Mich., 1960.Google Scholar
  32. 29.
    P. Cheng and J. Schachman, J. Poly. Sci., 16, 19 (1955).Google Scholar
  33. 30.
    B. Goldstein and B. H. Zimm, J. Chem. Phys., 54, 4408 (1971).Google Scholar
  34. 31.
    T. Raj and W. H. Flygare, Biochemistry, 13, 3336 (1974).CrossRefGoogle Scholar
  35. 32.
    J. Newman, H. L. Swinney, S. A. Berkowitz and L. A. Day, Biochemistry, 13, 4832 (1974).CrossRefGoogle Scholar
  36. 33.
    T. A. King, A. Knox, W. I. Lee and J. D. G. McAdam, Polymer, 14, 151 (1973).CrossRefGoogle Scholar
  37. 34.
    R. Pecora, J. Chem. Phys., 49, 1032 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1980

Authors and Affiliations

  • D. R. Bauer
    • 1
  1. 1.Engineering and Research StaffFord Motor CompanyDearbornUSA

Personalised recommendations